NASA TECHNICAL STANDARD NASA-STD-4009

National Aeronautics and Space Administration Approved: 06-05-2014
Washington, DC 205460001 Superseding NASATM § 2010216809

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)
ARCHITECTURE STANDARD

MEASUREMENT SYSTEM | DENTIFICATION :
None.

APPROVED FOR PUBLIC RELEASE 6 DISTRIBUTION IS UNLIMITED

NASA-STD-4009

DOCUMENT HISTORY LOG

Status Document Approval Date Description
Revision
Baseline 06-05-2014 NASA-STD-4009 is based on
NASA/TMd 2010216809

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

20f 154

NASA-STD-4009

FOREWORD

This Standard is publishdxy the National Aeronautics and Space Administration (NASA) to

provide uniform engineering and technical requirements for processes, procedures, practices, and
methods that have been endorsed as standard for NASA programs and projects, including
requiremats for selection, application, and design criteria of an item.

This Standard is approved for use by NASA Headquarters and NASA Centers, including
Component Facilities and Technical and Service Support Centers.

This Standard establishes a descriptioaroarchitecture standard for NASA space
communication radio transceivers. This architecture is a required standard for communication
transceiver developments among NASA space missions. Although the architecture was defined
to support spaebased platforms, the architecture may also be applied to ground station radios.

This Standard strives to provide commonality among NASA radio developments to take full
advantage of emerging softwadefined radio technologies from mission to mission. This
architectureserves as an overall framework for the design, development, operation, and upgrade
of these softwarbased radios.

Requests for information, corrections, or additions to this Standard should be submitted via
AFeedbacko in the NASAsistarncaResoarcedaolaand Techni ca
http://standards.nasa.gov

Original Signed By: 06-05-2014

Ralph R. Roe, Jr. Approval Date
NASA Chief Engineer

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

3of 154

http://standards.nasa.gov/

NASA-STD-4009

TABLE OF CONTENTS

SECTION

DOCUMENT HISTORY LOG.....cuiiiiiiiiiiiiiieeee et emeeee e e e s sssmnne s e ssnnnssnnnees
FOREWORD......ccttiiiiiiiiiii ettt en e e bbb bbb e e e e e
TABLE OF CONTENTS....ciitiiiiiiiieee e eees s e e ennes
LIST OF FIGUREScoi ittt e e et e e anr e e e
LIST OF TABLES.o eee et e s et e e e e et e e e e e e e e e e e e s s e e e e eeaeens
1. SCOPEttt a——— ittt it et e e e aaa e e e e e e aam— e aaaaaaaan
11 PUIDOSE . e
1.2 EXECULIVE SUMIMALY.....uuuiuiiiiiiee e e et eeeeiiee s e e e e e e eeeeannne e e e e e e e e eeeeeeeneeannnnns
1.2.1 Key Architecture REQUIFEMENLIS........uuuuiiiieiei e eceeeiiie e aeeer e
1.2.2 STRS OVEIVIEW.....ccceeeeiiiiieieeeeiititemme e e ettt e ssmse s a s s e e e e eeeeeeanans
1.2.3 Roles and ResponSIibIlitieS.........cccouvieeiiieiiii e
1.2.4 BaCKQIrOUNG........ccciiiiiiiiiiiii i ieeeiib et e e e e e e e e e e e e s s e e
1.3 APPHCADITILY .o —————
1.4 JLIE= 110] 11 o T PP PR PPPPPP
2. APPLICABLE DOCUMENTS ...t eeesieee e e s enmeee e
2.1 (CT=T T - | PP
2.2 GOoVvernmMENt DOCUMENIS.iiiiiiiiiii e ieeee et ettt e s eneee e e e eatan e e e eeeees
2.3 Non-Government DOCUMENLS.iiiiiiiiii e ceeee et e e eeee e eeees
2.4 Order Of PreCeUENCE........ci i it eeee et e e e e e e as
3. ACRONYMS AND DEFINITIONS ..oooiiiiiiieeeeeeeeeeeeeeeee e
3.1 Acronymsand AbDreviations..............uvuuiiiiiiiie e
3.2 1312 1110} S
4. HARDWARE ARCHITECTUREovviiiiiiiiieiieee e
4.1 Generalized Hardware Architecture and Specification................cccceeveee..
4.1.1 COMPONENTS.....cceiiiiiiiiiiieiitiee ettt eeer s e e e e e e e e e e e e enenaa s
I U | 0 Tox (o ST TR
g UG T |01 (=T g = T =SSP
4.1.3.1 EXternal INterfaCes..........uuuuuiiiiiiiiiiiieesiiiiiiieieeee et e e e eeeee e e e e e e e e e e e e,
4.1.3.2 NEIWOIKING ...eeeiiiiiieieeeeie e e e e e e e enere e e e
4.1.3.3 INternal INtErfacCeS........ccoiiiiiiiiiieeee s eenr e e e e e e e e aaeeas
4.2 Module Type SPeCIfiCatiOn..........cccuuuuriiiiiiieeeiiiib e
4.2.1 GeneralPurpose Processing Module..............coooiiiiiiceciiii e
4.2.1.1 GPM COMPONENTS....uuuiiiiiieieeeeeeeetieeers e e e e e e e e e e et e e e nnme e e e e e e e e essaeabn s
4.2.1.2 GPM FUNCHONS......iiiiiiie ettt eeee et e e e e e e
N G B €1 o VI [0] (T = Vo = SRS
4.2.1.4 GPM REQUINEMENIS. .. .ciiiiiiiiiieee ittt e et e e e e e e et mmmr e e e e e e aaa e e e e eenen,
4.2.2 SIgnatProcessing MOUIE..............uuuiiiiiiiiiieeriiiiiiii e
4.2.2.1 SPM COMPONENES. .. .iiitiiiiiiiie et eeree e e e et eeaa e s ess e e eas e e eaaeeeannaaees

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

4 of 154

NASA-STD-4009

TABLE OF CONTENTS (Continued)

SECTION PAGE
4.2.2.2 SPM FUNCHONS....cco ittt teee ettt smme e s s e e e e e e e e e ennaes 41
4.2.2.3 SPM INTEITACES.uuiiiiiiiiiiiiiiii e 42
4.2.3 Radio FrequenCy MOGUIE............uiiiiiiiiiiii e 43
4.2.3.1 RFM FUNCHONS. ...coitiiiiiiiieee et n e bbb e e 44
4.2.3.2 RFM COMPONENLS......uuiiiiiiiieeeeeeei e ieees ettt eme e e 45
4.2.3.3 RFEM INTEITACE. ..ottt iee et r e e e e e e e e e e e e 45
4.2.3.4 RFM REQUINEMENTS.....eiiiiiiiiiiiiiieee et meee e 45
4.2.4 SeCUNtY MOUUIE........oeeieeiiiie et ce e e e e e e e smmere e e e s e e e e e e e e e eeeeeeeeneens 45
4.2.5 Networking MOGUIE.........cooiiiiiii e 46
4.2.6 Optical MOAUIE......ccoiiii et e e 46
4.3 Hardware Interface DeSCIPLIQL...........uuuuuiiiiiiiiieeeiiiiiiiiie e e e e eeeee e 46
4.3.1 Control and Data INterfaCe..........ccuuvuiiiiiiiiieeniiiiiiiiiieeeeeee e 48
I T B T O o o111V gl [0] (=T o = Lo = 48
43.3 Thermal Interface and Power ConSUMption............ccoovvvvviieeeeeeeeeeeeeeeeeeeinns 49
5. APPLICATIONS ...t eeee s enens bbb eeeeeeeaaeaes. 49
5.1 Application Implementation..............oooo i 49
5.2 Application SEIECHION.cccee e 50
5.3 NAVIQATION SEIVICES. .. uuuiiiiiiiiiiiiiiii e ettt 50
5.4 Application Repository SUDMISSIONS..........uuuuiiiiiiiiiiceeeiiieeee e e e 51
6. CONFIGURABLE HARDWARE DESIGN ARCHIT ECTURE.................. 52
6.1 Specialized Hardware INterfaces...........cccoviiiiiiieemiiiieeeeeeeeeeee 53
7. SOFTWARE ARCHITECTURE ...cooiiiiiiie e eeeaes 55
7.1 Software Layer INterfaces...........oov i 55
7.2 = 5] (0 o (U =S 63
7.3 STRS APIS et 64
7.3.1 STRS ApplicatioAProvided Application Control APL............cccvvvieiviiieeennnee. 64
7.3.2 STRS Infrastructur€rovided Application Control API............ccccoeeeiiiieiiene. 81
7.3.3 STRS Infrastructure Application Setup APL..........cccccuviiiiiiieemniiiiieeeeee 89
7.3.4 STRS Infrastructure Data SiNK........ccccceeeeeiiiiiiiccce e 94
7.3.5 STRS Infrastructure Data SOUICE...........cceviiieiiiiiiiiee e e ee e 95
7.3.6 STRS Infrastructure Device Control ARL............coooiiiiiiiiimmn e 96
7.3.7 STRS Infrastructur&ile Control APL..........cooiiriiiiiiiiime e 102
7.3.8 STRS Infrastructure Messaging ARl..........oooiiiiiiiiiiieme e e 107
7.3.9 STRS Infrastructure Time Control APL............cooiiiiiiiiicceeccieiee e 110

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

50f 154

NASA-STD-4009

TABLE OF CONTENTS (Continued)

SECTION
7.3.10 STRS Predefined Dalal.........cooiiiiieeeeeiieeeeecies e eeeeeeeeeeene e e eeeeeanneees
7.3.11 Error HanNAliNg......cooooo i oo e e e ennnes
7.4 Portable Operating System Interface.............oooooiiiiiice e
7.4.1 STRS Application Environment Profile...............ouvviiiiccceeeeciee e,
7.5 NEIWOIK STACKciiiiiiiiiieee e e e e e e anee s
7.6 Operating SYSTEITL.........cciiiiiieiiiiiiemme et eerr e e e e e e e e e e e e eeaens
7.7 Hardware ADSEraction LayYer..........coooviiiiiiiiiiiieee et s
8. EXTERNAL COMMAND AND TELEMETRY INTERFACES
9. CONFIGURATION FILE (S) teeeeeiieeeiieiieeeeesseee st ssmnreeeeees
9.1 General Configuration File Format Definition and Use...............covvvvvieeee..
9.2 Platform Configuration Files.............oooiiiiiiee e
9.3 Application Configuration Files................uiiiiiiiiiceecceee e eeeee
APPENDICES
A Example Configuration Files.............ooooiiiiee e
Al STRS Platform Configuration Fildardware Example............cccccooevvvvivieeee...
A2 STRS Platform Configuration File Software Example...............ccccovieeennnnne
A.3 STRS Application Configuration File Example...............cooiiiiicceeieeeivvinnnn,
B POSIX APL Profil€.....cccc oot eeea e e e e e e e,
C Reference DOCUMENLS........ooiiiiii e
D ACKNOWIEAGMENLS. ...t e e e e e e e e,

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

6 of 154

NASA-STD-4009

LIST OF FIGURES

FIGURE PAGE
1 Roles and ResponSIDIItIES...........oooioi e 14
2 Hardware Architecture Diagram KeY.............uuuuuuuiiiiiccreeeeiiiiiiiiseseeeeeeeean,s 30
3 Notional STRS Hardware Architecture Implementation...............ccceeeveeeee 31
4 GPM ArchiteCture DetailS...........uuuuiiiiiiiiiiiieeeiiiiiiiiieeeee e emree e 37
5 SPM ArchiteCture DetailS..........uuiiiiiiie e 40
6 RFM Architecture DetailS.............eeiiiiiiiiiiiieeeiieee e 44
7 Waveform Compnent INStaNtiation.............oovveeeiiiiiiioccieeeeeeeee e 50
8 NotionalHigh-Level Software an@onfigurable Hardware Desigifaveform
APPLICAtIONINTEITACES.eiiiiiiiiiiiie e 54
9 STRS Software Execution Model...........ccoooiiiiiiiiiccc e 57
10 STRS Layered Structure in UML..........oooooiiiiiiiiiiie e 58
11 STRS Operating ENVIFONMENL........ccooiiiiieieeiiiceeeicie e eene e 60
12 POSIX-Conpliant VersusPOSIX-Conformant OS.............cccevveeieiiiieesivnnnnee. 62
13 STRS INTraStrUCIUIE.......oo ittt ieee e erer e e e e e e e e eeeeeas 63
14 STRS Application and DeViCe STIUCTUIE............ueeiiiiiiiiiieeeieiieieeeee e 65
15 STRSApplicationState Diagram................uuuuuiiiiiccmreereiiiiiierase e e e e eeeeanans 69
16 Profile BUilding BIOCKS............uviiiiiiiiiiiiiieeee e, 120
17 Command andelemetry INnterfaces.............ovuvuviiiiiiccceeeiccee e 126
18 XML Transformation ad Validation..............ccoovvveviiiiimmme e, 131
19 Configuration File DevelopmemIroCESS..........ccccoevvivveiiiiiieeee e 132
20 Example of Hardware Portion of STRS Platform Configuration.Eile......... 136
21 Example of Software Portion of STRS Platform Configuration.Eile.......... 138
22 Example of STRS Wavefor@onfiguraton File..............oooooiiiiiiennns 142

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

7 0of 154

O©CooO~NOOUIThA~WNPE

NASA-STD-4009

LIST OF TABLES
PAGE
STRS Module Interface Characterization..........cccccceeeveiiieeceieeieeeeeeeees a7
Examplé® DC Power Interface (Platform Supplied)...........cccoooeeiiiiieennnens 49
STRS Architecture SUDSYSIEM K&Y..........uuuuuiiiiiiiiiieeeeeiiniiies e e e e e e e e e eeees 59
STRS Software Component DeSCIPLIONS.......ccvvviiiiiiiiiiieeeeeeeeeeeeeeees 61
APP_CONMGUIE().eeeeeeeeeiiiiiiiiis e e e e et s s s s e e e e e e e e e e e e aeees s s e e e e e e e eaaaeeeeeenennnans 70
APP_GrOUNATEST() v vvverenneaeeeeeeeeeeesieeeiasae s e e e e e e e e e e e e e eeeeesnene e e e e e aeeeeeeeeenennnnnns 71
APP_INIGANZE(). ..o e oo oo a e e e aes 72
APP _INSTANCE() .. ttvvvvrieieeeeeeee ettt 73
N O 1 U= o (USSR 74
N o o =Y To | PP 75
APP_ReleaseObhJECL() .. .uuuuuiiiiei i 76
APP_RUNTEST() .ttt e 77
APP _STAM(). vttt ettt rmmme e 78
APP _STOP()--tvvvveeeeeeeeeeeteeeee e eeeme ettt 79
F o AT L1 L= (PP PPEPPPRPRR 80
STRS_CONFIGUB() -ttt ettt 82
STRS _GroUNATESI().u.uvuuuieieeee e e e e eee e e e eeeeis e e et enne e e e e e e e e e e eeeesenaaaa 83
STRS_INIGANZE()..eeeieeeeeeeeeee et e e e ens 84
STRS QUEIY(). e e e eeieeiieeeeeeeitt e e ettt e see s a e e e e e e eeeeeamanas 85
STRS_ReleaseODJeCI().......cuuueeeiiiiieiiie e e e 86
STRS _RUNTESI().cciiiiieiieiiiiiiie et cee e e e e e e e e e e e smeeie e e e e e e e e e e e e e e e e e eeeeeaen, 87
STRS_STAM() - evvvveeeeeeee e 88
S I RS TS] (] o U UUP TP 88
STRS_ABOITAPP():-etttvrrrreeeeeeeeiei ettt 90
STRS GEetErrOrQUEUE().....ceevveerrreiiiiee e e e et e e e e e e e e e e e e e emeeiaa e s e e e e e aaaaaees 90
STRS_HaNUIERIUEST(). ..o ee ettt iree e e e e e e e e 91
STRS_INStANtIALEAPPL) -+ v vvvrrnneeeeeeeeeee et ieeeiiiee e e e e e e e e e e e e e e e eeneeeeeeeeeeeeeenenen, 92
STRS _ISOK().eiteeeeeeeeee e eeee e e eeeess et ereeeaeeeeeennneees 93
YIS T e o | PP 93
STRS WIITE() .ottt e e et e e e e e e e e e e e e e s nnn s 95
STRS_REAU() ... e et eeeee et e e ieeeee et rnes bbb e e e e e ee e e e s eeeneees 96
STRS_DEVICECIOSE() . .eeteiieiiiieieeeii e 97
STRS_DeVICEFIUSN().....uuiieiiiiiie e eeee e 97
STRS_DEVICELOAU(). .. v vvvvrrrrrrrreiiiiiiiieeeieieieeeeeee e e e e e e e e e e e e s s e e e e e e e e e e e e e e e 98
STRS_DeVICEOPEN.....cuuuiiieiiiiiiiee ettt e e erne e e e e eaaaas 98
STRS_DEVICERERL().. e eeeeeeiieiieeeee e 99
STRS_DEVICESTAI(). ... ieeeeeeiiii e e eeiemmeee et enme e e e e e s 99
STRS_DEVICESTOPL) . e eeieeeisiiiiiitttttirreiiiibbbbbbeeee e e e e e e e e eeensssseereeeeeeaeeeaeeeens 100

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

8 of 154

NASA-STD-4009

LIST OF TABLES (Continued)

PAGE

STRS_DeVICEUNIOAA(). . vvurrunieeeeeee e eeeeiee e eeeeeereee e e e eeeeeeens 100
STRS_SEHUSR()..ciiieeeeeeiii it ereea e e e e e e e e e e e 101
STRS_FECIOSE(). . uueeeeeeee e ieeeeee e 102
STRS FIleGetFreeSPace().......cuvvvrerurriiiiiimmreeeeeeeeerieses s e e emeeennnnee s 103
STRS_FEGELSIZE(). . uuuuueieeeeie et ieeees ettt eetenne e e e e e e eeeeeeenannes 103
STRS_FileGetStreamPOINter().........uuuurueiiiiiesieeeririiiiiree e e e e e e e e e s sneeran s 104
SR R ST 1 (ST o= o) PR 105
STRS_FileREMOVE() ... uuuiiiiie e eeeeeeee e 106
STRS_FIlERENAME() .. e ittt 106
STRS _QUEUECTEALE()......cieeeeeerrirruiii i eeetr s e e e e e e e e emmmraar e e e e e e eeeaaeas 108
STRS_QUEUEDEIETE(). ...ttt et 109
STRS _REQISIEI()..ceeiieeeeiiiiiiiiiee st e e e e e e e e e e e e e s smemie s s e e e e e e e e e e e aaeeeeeeenann, 109
STRS_UNIEQISTEI() . .eeeeeiiiiiieeeeeeee e 110
STRS_GEetNANOSBNUAS()e.evvvrrrrrriiiiiiiiiee e e e e cereiciss e e e e e e e e e e e e e e eeer e e e e e e e e eeees 111
STRS_GEISECONUS(). . evvvvrrrrrrreriiiiiiiiaeerreeer e et e e e e e e e e e e e e e s s e e e e e e e e e aa e e e 111
STRS _GITIME() e eiiiieeeeeieeieieie i rree e enesss bbb e e eeeeeeaaeeaeeans 112
STRS_GetTIMEWIAP()-«eeeeeeeieeeeeeeeeeee e simmme e eee b 113
STRS_SEITIME()..eteeeeeieiiiiiiiiee e nree e 113
STRS_SYNCN() ettt e 114
STRS Predefined DaLal..........uuuiiiiiiiiiiiieeeiiieeeeee e meee e 115
Replacements for Unsafe FUNCLONS...........ccooiiiiiiiiiecceeeeee e 122
Sample HAL DOCUMENLAtION...........coevuiiiiiiiiimmr e 125
Suggested Services Implemented by the STRS Command and Telemet:

INEEITACES. ... rr e 128
POSIX Subset Profiles PSE51, PSE52, and PSEB3...........cvvvvvvvvicecivnnee, 145

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

9of 154

NASA-STD-4009

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRYS)
ARCHITECTURE STANDARD

1. SCOPE

This Standardiescribes the SpacelEcommunications Radio System (STR&hitecture for
softwaredefined radios (SDRs), an open architecture for NASA space and ground &tRS.
provides a common, consistent framewtwrlabstract the application software from the radio
platform hardwaré¢o reduce the cosindrisk of usingcomplex reconfigurable and
reprogrammable radio systemsross NASA missiondt achieveghis objective by defining an
architecture to enable the reuse of applications (waveforms and services implemented on the
SDR) &ross heterogeneous SDR platforms and reduce dependence on a single vendor. The
Standard provides a detailed description and set of requirements to implement the architecture.
The Standard focuses on the key architecture components and subsystems ibindetbetir
functionality and interfaces for both the hardware and the softimatedingthe applications.

The intended audience ftiris Standards composed of softwarepnfigurable hardware design
and hardware developers who require architecturefggaion detailgo develop arsDR

platform orapplication

A corresponding NASAechnicalhandbook NASA-HDBK-4009,Space Telecommunicatisn

Radio System (STR®rchitectureStandard Rationale, provides the rationale for the decisions made
to develophe architecture, provides additional information to clarify the requirements, gives further
examples, and answers questions from users.

This Standard is only one of a set of documents to be provided by the mission and used by the
STRSplatformprovidersor STRSapplicationdevelopersn the development of an STRS
compliant radio and/or applications. Typical radio acquisition specifications, which include size,
weight, power, radiation requirements, connector details, performance and behavior
requirementsdocumentation, and data rights agreements are to accompany this Standard in a
radio procurement.

1.1 Purpose

The purpose of this Standard isestablishan open architecture specification for NASA space
and groundSDRs Currently most missions eithase hardware radios, which cannot be

modified once deployed, or software defined radios with an architecture that requires
dependence on the radio provider and significant effort to add new applications. The
development of the Standardpart of the largeSTRS program currently underway to define
NASAGs appl i c aefined, necoafigurabletechnelagy te meet future space
communications and navigation system needs. Softbased SDRs enable advanced operations
that potentially reduce missioridicycle costs for spaca groundplatforms.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

100f 154

NASA-STD-4009

SDR technology allows radios to be reconfigured to perform different functions without the
necessity of using multiple radios to accomplish each communication fureriaiolingradio
count reductionio redu@ mass and power resources.

The STRS project provides the infrastructure and guidance for a repository of applications
developed for SDRs using the Standard. Adherence to the Standard for the development of SDR
platforms and applications and submitthtiee applications to the repository will enable the

missions to leverage earlier efforts by reusing various software components compliant with the
architecture developed in other NASA programs. This will reduce the cost and risk of deploying
SDRs for futire NASA missions.

The hardware, configurable hardware design, and software architecture and the supporting
documentation defined by the STRS Standard provides the ability to port applications among
heterogeneous platforms with minimal effort, reducesehance on the initiabTRSplatform
providers, and enables the implementation of the services that are envisioned for NASA radios.

1.2 Executive Summary
1.2.1 Key Architecture Requirements

The key requirements in the development of the STRS archi¢egte to decrease the
development time, cost, and risk of using SDRs while still accommodating advances in
technology. The advent of softwanased applications allows minimal rework to reuse
applications and to adapt to evolving requirements. Thetectlre does not include mission
specific functional and performance requirements, such as contents or format of the external
interfaces to the SDR; waveforgpecific requirements such as data rate, coding scheme, and
modulation and demodulation techniguspecific hardware; or security, fault tolerance,
redundancy, and fault mitigation approaches. Instead the architecture is careful to enable all
solutions that the mission might require as they relate to the missemific functional and
performance pecifications.

The requirements for the architecture are derived from the following STRS goals and objectives:

Usable across most NASA mission types (scalability and flexibility).

Decrease development time and cost.

Increase reliability o6EDRs

Accommodate advances in technology with minimal rework (extensibility).
Adaptable to evolving requirements (adaptability).

Leverage existing or developing standards, resources, and experieneef{dtatart
and stateof-practices).

Maintain vendoindependence.

Enable waveform application portability.

To o Too oo oo o To To

To meet these goals and objectives, the STRS architecture has an open architecture design that
accommodates the range of radio form factors that are envisioned by NASA for all mission
classes.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

110f 154

NASA-STD-4009

Thearchitecture can also not preclude the implementation of migigeeloped services on the
SDR such as:

A Multiple waveforms operating simultaneously across any RF band defined in the
SDR specification.

Commandedbuilt-in-test(BIT) and status reporting

Realtime operational diagnostics

Automated system recovery and initialization

Networking and navigation within the SDR

Secure transmission

Sharing of processor among-board elements

Too oo oo oo o o

1.2.2 STRS Overview

The STRS Standard consists of hardwaomfigurable hardware design, and software
architectures with accompanying description, guidance, and requirements. The hardware
architecture is defined igection 4. Section 5 outlines the process and requirements associated
with application developmm. The configurable hardware design architecture is defined in
section 6. The software architecture is definegeiction 7. An overview of each is provided
below.

The terms fAsoftwareo and fAconfi gur abtinguishhar dwa
the architecture items that apply to code (source code, object code, executables, etc.)

implemented on a processor; and designs (harddeseriptionlanguage (HDL) source,

loadable files, data tables, etc.) implemented in a configurable hardexace such as a field
programmable gate array (FPGA). Both items can change the functionality of the +sitlio in

using program control. The term Asoftwareo is
discuss all configurable items of the radigluding configurable hardware design. The

terminology used is not meant to imply design and implementation process.

The STRS hardware architecture is specified in a modular fashion at a functional level. The
hardware architecture standard requires i hardware provider define the functional

breakdown (modules) of the system and publish the functions and interfaces for each module and
for the entire radio platform in a hardware interface description (HID) document. Using this
information enables ASA and others developing applications or additional modules, or

interfacing to the platform, to have the knowledge to integrate and test the hardware interfaces
and understand the features and limitations of the platform.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

12 of 154

NASA-STD-4009

This Standard encourages the@elepment of applications that are modular, portable,
reconfigurable, and reusable. STRS applications use the STRS infrastproticked

application program interface8RIs) and services to load, verify, execute, change parameters,
terminate, or unloadn application. The STRS applications are submitted to the NASA STRS
application repository to allow applications to be reused in the future according to any accepted
release agreements. The appropriate application artifacts are submitted to the SiER®app
repository to provide future missions the information to use the application with limited effort.

The configurable hardware design architecture provides guidance to the development of
applications that are partially or fully implemented in a twane device, such as an FPGA.

Early consideration to enable reuse during the development of configurable hardware design is
critical. Suggestions are provided to decrease the reuse and porting effort and requirements are
included for the development abrfigurable hardware design to use the platform specified
abstraction.

The STRS software architecture is the focus of the current version of the STRS Standard. The
software architectural model describes the relationship between the software elemieetsmef
layers, in an STR8ompliant radio. The model illustrates the different software elements used in
the software execution and defines the API layers between an STRS application and the
operating environment (OE), and between the OE and the harplatfoem.

The STRS software layers are separated to enable developers to implement the software layers
differently according to their requirements while still complying with the STRS architecture. A
key aspect is the abstraction of the STRS applicatbith is either a waveform or service,

from the underlying OE software to promote portability of the STRS application. The STRS
software architecture uses three primary interfaae$pllows:(1) The STRS API(2) The STRS
hardware abstraction layer (HAkpecification and (3)The Portable Operating System Interface
(POSIX). The STRS API provides the interfaces that allow applications to be instantiated and
use platform services. These APIs also enable communication between STRS applications and
the STRSnfrastructure. The HAL provides a software view of the specialized hardware by
abstracting the physical hardware of interfaces. It is to be published so that software and
configurable hardware design runni aggatewith t he
the STRS infrastructure.

1.2.3 Roles and Responsibilities

The final configuration of an SDR and its applications is generally a product of multiple
organizations performing various roles. f#gure 1, Roles and Responsibilitigfustrates the

effort begins with a mission need for a radio, which could support communications, navigation,
and in some instances even networking functions. The mission system engineer defines
requirements. For each mission, 8iERSintegratorsSTRS platfornproviders, and STRS
application developers are selected. Eventually the platform and applications are integrated into
the STRS compliant radio product. Both the hardware and software are tailored to meet mission
specific needs.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

130f 154

NASA-STD-4009

The STRSplatform provder is the organization responsible for the design and development of
the SDR hardware platform, including the STRS OE (e.qg. infrastructure, OS), configuration files,
XML schema, etc. and associated documentation. The OE and hardware platform are a unique

set and become the SDR platform.

' Provides s
STRS Platform Provider

Recuiremerts

ij%\/

IF_
Requirements = —L)— Provides e
N

=zzUhsystems=
STRS Platform1

|

==artifact==
STRS Application

==artifact== [
Hardware

O

==arifact==

Hardware Interface
Definition (HID)

O

Configuration files

Mission 1
System Engineer
5

Requireme>

\
\

Mission 1 $TRS
Application Developer 1

Mission 1 5TRS
Application Developer 2

N
{
—% Pravides s

==artifact== [==atifact== [==atifact== [
05 XML schema HAL
==atifact== [==aifact== O
Infrastructure XML Transformation Tool
c=attifact== [S“a”:fa:‘;;s O w=artifact=> [
Documentation ::Lﬁi:aﬁon FPGA Wrapper
|
| ==artifact==]
e STRE Application
z=2subsystem== =] I Configuration files
- f
I‘i <
_ Kl .
==artifact-> Ol ke — — — — = A~ — = z=artifact== 7
STRS applicationd Miz<ion 1 ZTRS radio
STRS Integrator |
<=artifact=> M 7
Documentation - - I;lr
~ ==atifact== —\%
o Other Subsystems T T T PN
N Mission 1
i “ System Integrator
==subsystem== =] I
™ gubmit
|
==artifact== | A v
icati e
STRS application2 e D
’;_request ! retrieve \ System
==artifact== 0 - N
Documentation? h 2=attifacts= 0
Application Repository

Figure 10 Roles and Responsibilities

The STRSplatform provider is responsible for all the documentation associated with the

platform incl

udi

the user 6s

ng

gui de,

devel

The STRSplatform provider is responsible for the FPGA platfespecific wrapper and software
header files specifying the required interface, constants, typedefs, and stru&3Ri$e

platform provider is also responsible for the STRS configuration filedits, XML schema, and
transformation tool. If th&TRSplatform provider delegates responsibility for part of the OE to

a separate infrastructure provider, the responsibility for the appropriate files and documentation

may be delegated to that providemadl. If the STRSplatform provider delegates responsibility
for part of the hardware to a separate hardware provider, the responsibility for the pertinent HID
documentation may be delegated to that hardware provider as weS.TR&platform provider
is ultimately responsible to integrate and deliver all aspects of the platform and OE

documentation.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

14 0of 154

opm

NASA-STD-4009

The mission and th8 TRSapplication developer have the responsibility to evaluate the contents
of the STRS repository against the missitaveloped applicain requirements and determine if

a new application should be developed or if an appropriate application exists in the repository
that is a candidate for a port to the defined platform. Depending on the results of this decision,
the STRS application devegder either creates a new application or ports an existing STRS
application, usually retrieved from the STRS repository. ShRSapplication developer

performs unit tests, and documents the functionality.

The STRS integrator brings the hardware platfand software application together on the SDR

platform. TheSTRSintegrator could be th8 TRSplatform provider, th&TRS application

developer(s)a mission engineer, or even a third party. SW®Si nt egr at or 6 s r ol e i
application properlyunning on the SDR platform to meet the communication, navigation

other functions of the mission. Once the STRS radio integration is complete, it is delivered to a
system integrator who incorporates it into the mission spacecraft system. Softwaes apelat

possible during the STRS radio and system integration. Following system integrat®hRiBe

application developer delivers the version of the software used for the deployed system, and the
associated documentation, to the STRS repository.

It is likely that multiple applications will be developed for a single STRS platform, prior to
deployment and during its operational lifetime. During operations, after the radio has been
deployed, additional application providers, who may be independent ofigieal platform or
application provider, could develop additional applications for the original STRS radio. The new
providers develop applications for the SDR platform much like the original application provider
and deliver the application to the saargossibly a different STRS integrator. Following
successful integration, the application software is delivered to the STRS application repository.
Mission operations performs the role of system integrator when uploading the application to the
STRS radb.

For the next mission (mission 2), either a derivative of the initial platform or a new
STRScompliant platform is envisioned. The mission 2 application provider may withdraw
applications from the repository to use for the new STRS radio projeetmidsion 2

application follows a similar path of delivery to the mission 2 STRS integrator who incorporates
the new hardware platform material and delivers the mission 2 STRS radio based on the original
application and new hardware platform. As more mode missions deploy SDRs, new

platforms and applications may be developed but also platforms and software are reused,
marking the significant difference with the new technology compared to legacy radios.

1.2.4 Background

The deployment of SDRs for NASAissions was a new concept in 2002 due to the development
of reconfigurable components useable for space radios. The need to reduce the cost and risk of
using SDRs was identified and the development of the STRS architecture was initiated. In 2007,
the achitecture was determined to be ready for flight implementation in a technology
development project. This project was originally called the Communication, Navigation, and
Networking reConfigurable Testbed (CoNNeCT). CoNNeCT was later renamed the SCaN
Testbed. Three SDRs, compliant with the STRS architecture, were procured in 2008 and 2009

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

150f 154

NASA-STD-4009

for the SCaN Testbed, using the architecture definedanhmicalmemorandum and referred to

in the procurement specifications as Version 1.02.1. The SCaN Testbéavehed in July

2012 and operates on an external truss on the International Space Station (ISS).

The SCaN Testbed is an experimental communications system that provides the capability for
S-Band, KaBand, and EBand communication with space and groasdets. Investigation of

SDR technology and the STRS architecture are the primary focus of the SCaN Testbed. As a
completely reconfigurable testbed, the SCaN Testbed provides experimenters an opportunity to
develop and demonstrate experimental wavef@nusapplications for communication,
networking, and navigation concepts and to advance the understanding of operating SDRs in
space. Lessons learned from 8¥RSplatform provider STRSapplication developers, and
STRSintegrators of the SCaN Testbeayided critical insight for the development of the

current Standard contained in this document. The updates from the Version 1.02.1 Technical
Memorandum to the NASATD-4009 can be requested from the STRS project.

1.3 Applicability

This Standard is afipableto space and grourfDRsdeveloped by or for NASA missions.

This Standard is approved for use by NASA Headquarters and N&&ners, including
Componenfacilities andTechnical andervice SupportCenters, and may be cited in contract,

program and other Agency documents as a technical requirementStaindard may also apply to

the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements only tc
the extent specified or referenced in their contracts, granggreements.

Requirements are numbernedhe form (STRS##)and 1 ndi cat ed bxplamatore wor
or guidance text is indicated in italics beginning in section 4.

1.4 Tailoring

Tailoring of thisStandard for application to a specifiogram or project shall dermally
documented as part of program or project requirementagmdved by the Technical Authority.

2. APPLICABLE DOCUMENTS

2.1 General

The documents listed in this section contain provisions that constitute requirefntsStandard
as cited in the text.

2.1.1 The latest issuances of cited documents shall apply unless specific versions are designated.

2.1.2 Nonuse of specific versions as designated shall be approved by the responsible Technical
Authority.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

16 of 154

NASA-STD-4009

The gplicable documents are accessible via the NASA Standards and Technical Assistance
Resource Tool dittps://standards.nasa.gowmay be obtained directly from the Standards
Developing Organizations or other documeistributors.

2.2 Government Documents
None.
2.3 Non-Government Documents
Institute of Electrical and Electronics Engineers (IEEE)

Note: The foll owing document is the current
applicable to the requireme8TRS90.

Document Number Document Title
| EEE 1 0-20B3 1 3 E IEEE Standard for Information Technoldpystandardized
Application Environment Profile (AEB) POSIX®
Realtime and Embedded Application Support
2.4 Order of Precedence
This Standard establish requirements f@narchitecture standard for NASA space
communication radio transceivdyat does not supersede nor waive established Agency

requirements found in other documentation.

2.4.1 Conflicts between this Standard and other requirementswiats shall be resolved by
the responsible Technical Authority.

3. ACRONYMS AND DEFINITIONS

3.1 Acronyms and Abbreviations

ADC analogto-digital converter

AEP applicationenvironmentprofile

AGC automaticgain control

ANSI American National Standds Institute

API applicationprograminterface

APP application

ASCII American Standard Code for Information Interchange
ASIC applicationspecific integratedircuit

BIT built-in test

BSP boardsupportpackage

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

17 of 154

http://standards.nasa.gov/

C++
C&DH
CCSDSs
CoNNeCT

COTS
DAC
DC
DEC VMS
DLL
DSP
EDIF
EEPROM
FIFO
FIPS PUB
FPGA
GPIO
GPM
GPP
GPS
HAL
HDL
HID
HW
I/O

ID

IEC
IEEE
IF
INCITS
P

ISO
ISS
JTC
JTRS
LLC
LNA
LRU
MAC

MDA

NASA-STD-4009

computer programming langge
command andlatahandling
Consultative Committee for Space Data Systems

Communication, Navigation, and Networking reConfigurable
Testbed(This namehas beemeplacedwith ScaN)
commercialoff the shelf

digital-to-analogconverter

direct current

Digital Equipment Corporation Virtual Memory System
dynamiclink library

digital signal processor
electronicdesigninterchangéormat

electrically erasable programmableeadonly menory
firstin, first out

Federal Information Processing Standard Publication
field programmablayatearray
generalpurposenputoutput
generalpurposeprocessingnodule
generalpurposeprocessor

global positioning system

hardwareabstractionayer

hardware description language
hardwareinterfacedescription

hardware

inputbutput

identification,identifier

International Electrotechnical Commission
Institute of Eletrical and Electronic Engineers
intermediatdrequency

InteNational Committee for Information Technology Standarc
internetprotocol

International Standards Organization

International Space Station

Joint Technical Comittee

Joint Tactical Radio System

logicallink control

low-noiseamplifier

logicalreplaceablanit

mediumaccesscontrol, a sublayer of thepensystem
interconnectiomlatalink layer
modeldriven architecture

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

180f 154

NASA-STD-4009

mVpp millivolt peakto-peak voltage

MMU memorymanagemendnit

NASA National Aeronautics Space Administration

NM networkmodule

NPR NASA Procedural Requirement

OAL OEM adaptationayer

OE operatingenvironment

OEM original equipmentmanufacturer

OM opticd module

OMG Object Management Group

OTAP overthe-air programming

ORMSC Operational Research MSc Programmes

oS operatingsystem

0SS open source software

PIM platform-independentodel

POSIX Portable Operating System Interface

PROM programmableeadonly memory

PSE51 minimal reatime systemprofile, defined in IEEE Std 1003.13

PSES2 reatime controllersystemprofile, defined in IEEE Std 1003.13

PSES3 dedicated re&ilme controllersystemprofile, defined in IEEE Std
1003.13

PSES54 multi-purpose realtime system profile, defined in IEEE Std
1003.13

PSM platform-specific model

PUB publication

RAM randomaccesgnemory

RF radio frequency

RFM radio frequency module

ROM readonly memory

RPN reversePolish notation

RT reconfigurabldranscever

RTOS reaktime operatingsystem

SCA Software Communications Architecture

ScaN Space Communications and Navigat(oew name for
CoNNeCT)

SDR software-definedradio

SEC securitymodule

SEU single-eventupset

SPM signalprocessingnodule

SRAM staticrandomaccessnemory

STRS Space Telecommunications Radio System

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

190f 154

NASA-STD-4009

SWRADIO softwareradio

TT&C telemetry, tracking, and command

TCP transmissiorcontrol protocol

™ technical memorandum

TMR triple-moderedundancy

TP technical publication

UML Unified Modeling Language

UNIX computer operating system developed by AT&T Bell
Laboratories.

VHDL VHSIC hardwaredescriptionlanguage

VHSIC very-high-speedintegratedircuit

VMS Virtual Memory System

Windows NT Windows operating systednNT, new technology

XML Extensible Markup Language

XPath XML Path Language

XSD XML 1.0 Schema Definition

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformation

3.2 Definitions

To improve the understanding of material pregd in the STRS documentew terms and
definitions that are rapidly emerging in the fieldSiDRsare provided beloyas follows:

Adaptability Ease with which a system satisfies differing system constraints and u:
needs.

Application: Execut#dle software program thakhibits predetermined functionality ant
may contain one or more software modules.

Note: A primary example of an STRS application is the waveform application. An
STRS applicatiors tocomply with the architecture.

Application Program InterfacAP]): Formalized set of software calls and routines th
can be referenced by the application program in order to access suppgstem or network
services.

Architecture Organizational structure of a system, the relatiqgpsshetween its
components, and the principles and guidelines governing their design and evolution over-

Autonomous Operationimplementation decisiemaking algorithm that can be
implemented on a system level (fully autonomous) or at the subsiestel (semiautonomous)
according to mission requirements.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

200f 154

NASA-STD-4009

Availability: Degree to which a system or component is operational and accessible
required for use.

Board Support Package (BSHjardware abstraction of tigeneral purpose procesgi
module GPM) for the POSIXcompliantoperatingsystem(OS), whichcontains the boot
generic and processspecific drivers required for the specific hardware.

Note: The BSP leverages commeretdf-the-shelf (COTS) device drivers and
other software acessary for applications to access the specific hardware.

Built-In Test Internal test to determine whether or not the STRS radio and each
subsystem are working properly.

Note:STRS health management uses BIT to automatically monitor the health of
the system and to pass any identified problem to the fault management. STRS faul
management uses BIT to automatically monitor, diagnose, and isolate system
problems.

Common Platform Generic set of hardware and software radio modules that meets
requirements for multiple mission types.

Component Hardware or softwarthat make up a systemwhichmay be subdivided intc
otherparts or units

Note:The terms fimodul e, 0 Acomponent, 0 a
interchangeably or defined to be sldraents of one another in different ways
depending upon the context. The relationship of these terms is not yet
standardized.

Configurable Hardware DesigrnThe electronic files used to configure the portion of tl
SDR hardware that can be updatedradtployment.

Note: Configurable hardware design is often informallnd often

incorrectly- referred to as firmware. The term firmware is defined by the

IEEE Standard Glossary of Software Engineering Terminology, Std 610.12
1990, as followstiThe comimation of a hardware device and computer
instructions and data that reside as reawly software on that device. Notes:

(1) This term is sometimes used to refer only to the hardware device or only to
the computer instructions or data, but these meaningsi@precated. (2) The
confusion surrounding this term has led some to suggest that it be avoided
altogethero

For this Sandard, to avoid confusictme termfifirmwareo is not being used.

The term Aconfigurable hardware desig
configurable hardware devigsuch as an FPGA, it includes the FPGA source

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

210f 154

NASA-STD-4009

code written in HDL, the image storedremdom access memoriRAM) and
used by the FPGA, and supporting configuration files, if applicable.

Data Publisher Software compaent that transmits data to one or more subscribers.

Note:In the STRS architecture, it may be implemented by waveforms and parts of
the STRS infrastructure.

Data Subscriber Software component that receives data from the data publisher.

Note:In the STRS architecture, it may be implemented by waveforms and parts of
the STRS infrastructure.

Deployment All the processes involved in getting new software or hardware up anc
running properly in its environment, including installation, configuratranning, testing, and
making necessary changes.

Evolvability: Ease with which a system or component can be modified to take adve
of new software or hardware technologies.

External Interface Functional and physical connections at the banied of a system
that are designed to interoperate with other systems or components.

Note: Examples include interfaces to or from the flight computer, power, data
sources, data sinks, antennas, mounting locations, and optical links.

Fault Managemedn Set of functions that detect, isolate, and correct malfunctions wit
the system or provide notifications.

Flexibility: Ease with which a system or component can be modified for use in
applications or environments other than those for which stspecifically designed.

Flight Computer Separate computer that is used to monitor and control the STRS 1

Note: The flight computer may be connected to the STRS radio electrically,
electromagnetically, optically, etc. The flight computer mayaia the watchdog
timer for the STRS radio.

GeneralPurpose Processing Modulelardware moduléhat contains and executes the
STRS OEand STRS applications and services software

Note: The GPM consists of tlgeneral purpose processdePP), appropiate

memory (both volatile and nonvolatile), system bus, the spacecraft (or host) TT&C
interface, ground support telemetry and test interface, and the components to
support the radio configuration.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

22 0of 154

NASA-STD-4009

Guidelines Nonbinding statements intendeddicect the broader and longéerm
aspects of the STRS architecture.

Hardware Abstraction LayerLibrary of functions that providessaftware viewof the
specialized hardware by abstracting the physical hardware interfaces.

Hardware Device Physicéentity that is capable of performing a function.

Hardware Interface Descriptiodocumentation containing information about each
modulés physical and electrical connections, performance, capability, size, weight and po
applicable, to enablategration between components of the system.

Health ManagementMonitoring the health and performance of a system, subsysten
device or process.

Note: Health management invokes fault managenwenén corrective action is needed.

HierarchicalStructure Structure that characterizes a system in which components &
contained by other components and/or provide services to the nextleighlecomponents.

Note:Hierarchical structure is a key attribute of an open architecture that enables
sysem description, design, development, installation, operation, upgrades, and
maintenance to be performed at a given layer or layers. This type of structure allow
each layer to be modified without affecting the other layers.

Interoperability (1) Ability of a system to work with or use the pantsquipment of
another systen(2) capability of different radio systems or radio networks to communicate &
exchange information with each other.

Note:Dissimilar systems or networks may achieve interopétaly changing their
operating parameters to a common compatible format or by operating through a br
that translates between incompatible formats. An alternate definition is to determin
adapt all radio parameters required for broadest commuincatompatibility across all
target networks.

Legacy Radio Nonprogrammable radio designed for one fixed configuration that
produces a single waveform at a specified frequency.

Note: The radio may have limited options for tuning, data rate, and godor

may even carry multiple types of data, but it is incapable of adapting to new

waveforms.

Maintainability Ease with which a software system or component can be modified
correct faults, improve performance, or other attributes, or adaphi@nged environment.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

230f 154

NASA-STD-4009

Method Implementation of an operatiowhichspecifies the algorithm or procedure
associated with an operation.

Module Selfcontained hardware or software component that interacts with a large
system.

Note:A software radule (program module) performs specific tasks within a software
system. A hardware module is a physical grouping of devices capable of implemen
specific functions.

Open Architecture Architecture whose functions, interfaces, components, andsgrde
rules are defined and published.

Open Source or OpeBource Software (OSSYAny computer software distributed unds
a license that allows users to change and share the software freely.

Note:OSSis required to have its source code freely av@#aand eneusers have the
right to modify and redistribute the software to others.

Open System System that has specified, publicly maintained, and readily available
standards.

Overthe-Air Programming (OTAP) Method of providing software updes by means ol
a communication channel realized by the STRS radio itself.

Portability Ease with which a system application or service can be transferred fron
hardware or software environment to another.

PortableOperatingSysteminterface Family of IEEE standards 1003.n that describes
fundamentabperating system (OSgrvices and functions necessary to provide a Ul
kernel interface to applications.

Note:POSIX is not an OS but ensures that programming interfaces are avddahke
application programmer.

Queue List in which items are appended to the last position in the list and retrievec
the first position in the list; that is, the next item to be retrieved is the item that has been ir
list for the longest tira.

Radio Frequency Module (REMModule that converts to and from carrier frequencie
and provides the signgkocessing module with basebandrdermediate frequencyR) signals
and provides the transmission and reception equipmentadtb frequncy (RF) signals.

Note: RFM-associated components may include filters, RF switches, dipléxers,
noise amplifiers (LNAs)power amplifiersanalogto-digital (ADC) converters,
anddigital-to- analog(DAC) converters. This module handles the interfabas

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

24 0of 154

NASA-STD-4009

control the final stage of the transmission or first stage of the reception of the
wireless signals, including antennas.

RealTime Operating System (RTOSPS that guarantees a certain capability within
specified time constraint.

Reconfigirability: Ability to modify functionality of a radio by changing the operatior
parameters without requiring a software update.

Reconfigurable RadioRadio whose functionality can be changed either through ma
reconfiguration of radio modules onder software control.

Note: Software reconfiguration control of such radios may involve any element of th
radio-communication networlSDRsare a subset of reconfigurable radios.

Reconfigurable Transceiver (RTRadio with limited processing aseélectable remote
reconfiguration (e.g., filter parameters and modulations).

Reconfiguration Act of modifying the functionality of a radio by changing the
operational parameters without updating the software.

Reentrant FunctianFunction that an be entered before completion of a prior executi
of that same function and execute correctly.

Note:A function that is reentrant is automatically thresalfe, but not necessarily the
reverse.

Reliability: Ability of a system or component to pemin a required function under stats
conditions for a specified period of time.

Reprogrammability Ability to modify functionality of a radio by changing the
operational software aronfigurable hardware desigither wholly or partially.

Reusabity: Degree to which a software module or other work product can be used
more than one computing program or software system.

Scalability Degree to which components or functions in an implementation can be
in systematic proportions for vang capacities.

Selectable Ability to choose from a range of choices.

Note:For example, a selectable parameter may be modified to change system
characteristics at runtime.

Services Software programs that provide functionality available fer s other
applications.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

250f 154

NASA-STD-4009

SignatProcessing Module (SPMModule that contains the implementations of the
signal processing used to handle the transformation of received digitally formatted signals
data packets and/or the conversion of data gadk®® digitally formatted signals to be
transmitted.

Note: The SPM mainclude the spacecraft data interfa@pplication specific integratec
circuits (ASIC3, FPGAs digital signal processor€DSP3, memory, and connection
fabric or bus.

Software Computer programs, procedures, and possibly associated documentatiol
data pertaining to the operation of a computer system.

Note:l n certain contextssofhwahie® &8l aode
configurable hardware desigrior examplej n t h eoftwaeedefimedfiadio,0
the word Asoftwareo i ncl uthether cmext§, theg ur
word fAsoftwareodo i s me aprdcesson espeaigiyirythec o d
Software Architecture sectionn this case, eventhe processor is embedded

within configurable hardware, the software that executes on the processor is not
Aconfigurabl edhardware design

SoftwareDefinedRadio Radio in which some or all of the physical layer functions a
implemented in softwarend/orconfigurable hardware design

SoftwareDefined Radio ArchitectureComprehensive, consistent set of functions,
components, and design rules according to which radio communications systems may be
organized, designed, constructed, deployed, operatd evolved over time.

Note: A useful architecture partitions functions and components such that (1) functi
are assigned to components cleadpd (2) physical interfaces among components
correspond to logical interfaces among functions.

Software Device A software abstraction of a hardware device or group (aggregate)
hardware devices.

Note: An STRS device is a software device that is part of the STRS infrastructure,
a welldefined and portable API that may use the HAL to readewand control
hardware devices.

Software Radio Extension of a SDR with more functionality implemented in GPPs ¢
opposed to ASICs and FPGAA. software radio implements communications functions
primarily through software in conjunction with mmmal hardware.

Note: Software radios are the ideal SDR in which digitization occurs at the
antenna.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

26 of 154

NASA-STD-4009

Space Telecommunications Radio SystdPnoject thatlefinesandmaintainsthe SDR
architecture for NASA.

Specialized HardwareSeparate &rdwarethat can be initialized or controlled using
software.

Standards Technical specifications that are widely used, consenasisd, published,
and maintained by recognized industry standards organizations.

STRS Command Source that abstracts thexamand functionality usually found in the
interface to the flight computer.

STRS Infrastructure Part of the STR®E that configures and controls STRS
applicationsand services as well as specialized hardware via the HAL.

Note: Additional functionaliy may be required for radio robustness and mission
dependent requirements.

STRS Operating EnvironmenPortion of the STRS radio that contains the STRS
Infrastructure, the POSEEonformant RTOS, the HAL, and optional middleware software.

Note: TheSTRS OE executes STRS services and waveform applications.

STRS Platform Combination of hardware and software components, including the
STRS OE, capable of executing software applications.

STRS Radio SDR that is compliant witthis Standaréndthat runs one or more
waveforms.

System Collection of components organized to accomplish a specific function or a
functions.

SystemArchitecture Abstract description of the entities of a system, and the relatiol
between the entities.

ThreadSafe Function that works correctly during simultaneous execution by multip
threads, without unwanted interaction between the threads. A thread is a part of a prograr
can execute independently of other parts. A thread is the smaliestince of programmed
instructions that can be managed independently [y&scheduler.

Note:A function that is reentrant is automatically thresalfe, but the reverse is not
necessarily true.

Upgradeability Ability to make changes to a portion thie systemeasier by limiting the
changes, as much as possible, to the updated part.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

27 of 154

NASA-STD-4009

Note: It is clear that greater upgradeability is greater ability.

Usability: Ease with which a user can learn to operate, prepare input for, and intery
the ouput of a system or component.

Use CasesSituationsthat capture the requirements of a system by describing how t
system should interact with the users or other systems (the actors) to achieve specific goz

Watchdogdrlimer. Software and/or havdare that monitor the health of a system and, i
problem is detected, take the appropriate action to restore the system back to health.

Waveform Set of transformations applied to information (e.g., voice or data) that is
transmitted over the air drthe corresponding set of transformations to convert received sig
back to their information contents.

Note: Traditionally, a waveform was simply an electromagnetic signal whose amplit
varies with time.

WaveformApplication Code that implem#s all the functions and algorithms necess
to realize a waveform.

Note: The waveform application can be distributed among various processing elem
including specialized hardware (e.g., FPGAs and DSPs). In STRS, if the waveforn
application requies runtime support for functions that it cannot provide directlys i
use the STRS APIs in the infrastructure to access the desired functions whether or
they are provided by the infrastructure directly or by other waveforms or services.

4. HARDWARE ARCHITECTURE

I n addition to providing benefits by def.i
radios, this Standard also defines standards for the hardware portion of the radio. Hardware

technologies usually change more rapidly than saftwand each radio implementation
generally has very specific spacecraft depecteEnand requirement3 herefore, the STRS
hardware architecture is specified at a functional level, rather than at the physical
implementation level. Also, a functioflalvd architecture will remain applicable over a longer
time frame. It should be noted that programs have the latitude to standardize hardware
requirements at the implementation level for multiple radio procurements.

The STRS hardware architecture was developéh consideratiorof several key constraints

and conditions for operating space SDRs. One major issue driving the hardware architecture

ni

formulation was the need for flexibility, so that a single architecture is capable of addressing the
range of differat mission classes. The mission classes have radio requirements that range from

requiring small radios that are highly optimized to meet severe size, waighpower
constraints, to missions requiring complex radios with multiple operating frequencid¢sgirer

data rates. This requires that the hardware architecture accommodate a range of reconfigurable

processing technologies including GPPs, DSP, FPGAs, and ASICs with selectable parameters.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

28 of 154

ng

NASA-STD-4009

Currently, reconfigurable signal processing is primarily penfed in specialized signal

processing hardware for the frequencies and data rates used in NASA space missions, and this is
expected to continue for some time. In addition to providing capability, specialized signal
processing is generally more power e#iti than general purpose processing. Likewise, the use

of FPGAbased specialized signal processors is generally more power efficient thabd3&¢

signal processing. The needs for specialized processing are supplemented by the software
infrastructure, wheth is more suited for execution in a GPP. The architecture also enables
technology infusion over time, accommodating the rapidly evolving capabilities of processor
speeds and signal processing. In addition, the conversion point, where the signal isdigitiz

moving closer to the antenna. Considering these points, the architecture provides a flexible
framework, emphasizing common terminology for hardware functions and interfaces, common
documentation, and common formats and requirements for waveforaeanceSTRS
application developers to utilize a platfor md
specific hardware implementation approach.

An STRS platforns tobe delivered with a complete HID, which is described in seétibThe

HID specifies the electrical interfaces, connector requirements, and physical requirements for

the delivered radio. Each modul ebs HID abstra
performance.

(STRS1) An STRS platform shall have a known state aftergietion of the poweup process.
4.1 Generalized Hardware Architecture and Specification

Figure 2, Hardware Architecture Diagram Key, illustrates the symbols and terminology used
within the hardware architecture diagrams. The hardware diagram illustthesadio

functions and the interconnects for each module. The modules are a logical and functional
division of common radio functions that comprise an STRS platform. Modules are not intended

to represent physical entities of the platform. As developersse how to distribute and

implement the radio functions among hardware elements, the specification provides the guidance
on the interfaceand abstractions thaire tobe provided to comply with the architecture. The
module and function connections preil in the diagrams are data path, control, signal clock,

and external interfaces.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

290of 154

NASA-STD-4009

) Modules Radl_o
Internal Connections Function
Data
General
Control Purpose
Processing
Clock Module (GPM)
System Bus
External Connections
Data Specialized
Processing
Clock Module (SPM)
Control
Ground Test
External Interface)
Radio
Frequency

Module (RFM)

Figure 20 Hardware Architecture Diagram Key

Figure 3, Notional STRS Hardware Architecture Implementation, shows thelbigh STRS
hardware architecture. Thiggureillustratesthefunctional attributes and interfaces for each
module. A module is a combination of logical and functional representations of platform and
applications implemented in a radio. T®dules are divided into their typical functidins

provide acommon description and terminology reference. Each STRS platform provider has the
flexibility to combine these modules and their functionality as necessary during the radio design
process to meet the specific mission requirements. Additional modules adaelefor

increased capability.

The hardware architecture does not specify a physical implementation internally on each
module, nor does it mandate the standards or ratings of the hardware used to construct the
radios. Thus the radio supplier can encap$el company proprietary circuit or software

designs, provided the modules meet the specific architecture rules and expose the interfaces
defined for each module. There is flexibility to physically combine these modules as necessary
during the radio desigprocess to meet the specific mission requirements. For example, all RF
and signalprocessing components or functions may be integrated onto a single printed circuit
board, easing footprint, interface, and integration issues, or an approach with mutigldsh

and enclosures could be used.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

300f 154

NASA-STD-4009

Each missionor class of missionsnay choose to standardize certain interfaces and physical
packaging. This approach provides NASA with the flexibility to adopt different implementation
standards for various missiafasses. Thus, if a series of radios are required with common
operating requirements, physical construction defaileh as bus chassis or card sjican be

part of the acquisition strategy, for cesffective modularity at a lower level to match the lif

cycle of the hardware. Another example of the flexibility is where a large mission class program
may choose to standardize the details of thedrgignatprocessing interface. This might be

done to facilitate the use of different RF modules, but the sagnal process module, for radios
used for several similar missions.

Figure 3 depicts radio functionsr elementsexpected for each module in a notional sense. It
should be noted that not all the elements shown in each module are necessarily fequired
implementation. This architecture specifies the functionality of each module, but it does not
necessarily specify how they are implemented. Mission requirements will dictate the
implementation approach to each module, and the modules required inashah r

Ground Test
Interface

Host / TT&C
Interface
Work Area
Memory

Persistent
Memory

General Purpose Processor

Waveform /
Application

. Low Speed Radio
Operating Signal Configuration|

Environment Processing &CSys;tell'n
ontro

Variable

Gain / Antenna

Test &
Frequency Status ICtorl1ftrol
T nterface

Test & System
Status Control
Clock
Distribution

High Speed
Digital Signal
Processing

Waveform

Clock
Interface

Analog to
Digital

— Receive RF [— *

I Antenna
Interface

Formatting

Interface Storage
Digital to

Analog

— Transmit RF [

RF Module (RFM)

Figure 30 Notional STRS Hardware Architecture Implementation

APPROVED FOR PUBLIC RELEASEd DISTRIBUTION IS UNLIMITED

31lof 154

NASA-STD-4009

4.1.1 Components

The approach taken in the STRS is to describe the radio hardware architecture in a modular
fashion. The generic hardware architecture diagram identifies three fma@tional components
or modules of the STRS radio. Although not shown in figuaeditional modules (e.g., optical,
networking, and security) can be added for increased capability and will be included in the
specification as it matures. The hardwarelatecture currently consists of the following
modules:

GeneralPurpose Processing Modulé€Consists of th&PP, appropriate memory (both volatile
and nonvolatile), system bus, the spacecraft (or host) TT&C interface, ground test interface, and
the componats to support the radio configuration.

SignatProcessing Modute This module contains the implementations of the signal processing
used to handle the transformation of received digitally formatted signals into data packets
and/or the conversion of dagmckets into digitally formatted signals to be transmitted. Also
included is the spacecraft data interface. Components include ASICs, FPGAs, DSPs, memory,
and connection fabric or bus.

Radio Frequency ModuleThis module handles the RF functionality toyade the SPM with

the filtered, amplified, and digitally formatted signal. For transmission it formats, filters, and
amplifies the output signal. Its associated components include filters, RF switches, diplexer,
LNAs, power amplifiers, ADCs, and DACs.4d'hiodule handles the interfaces that control the
final stage of transmission or the first stage of reception of the wireless signals, including
antennas.

Security Module (SEC)Though not directly identified in the generic hardware diagram, an
SEC is als being proposed to allow STRS radios to support future security requirements. The
details of this module will be defined in later revisions of the architecture.

Network Module (NM) The architecture supportSonsultative Committee for Space Data
System¢CCSDS) and Internet Protocols (IPs) and networking functions. However, the Network
Module(NM) may be realized as a combination of both the GPM and SPM.

Optical Module (OM) This module supports the integration of optical equipment when used.
The detdiof this module will be defined in later revisions of the architecture. (It has many
similarities to RFM, but these are for optical carriers.)

4.1.2 Functions
Test and status, fault monitoring and recovery, and radio and TT&Cluatdling functionsre
to be implemented on all modules to sdewel The details are mission specific and are stated

as part of the radio acquisition. The related control and interface requirements for the shared
module functions are stated in the corresponding module section

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

320f 154

NASA-STD-4009

Test and StatusEach module (or combination of modules) should provide a means to query the
current health of the module and run diagnostics.

Fault Monitoring and RecoveryEach module (or combination of modules) should incorporate
detection of opeational errors, upsets, and major component failures. These may be caused by
the radiation environment (e.g., singdgent upsets (SEUS)), temperature fluctuations, or power
supply anomalies. In addition to detection, mitigatiand failsafe techniquessuld be

employed. Each module should have a default paywenode to provide the minimal

functionality required by the mission. This fadfe mode should have minimal software and/or
configurable hardware desigitependency.

Radio Data Path SDRs can beanplemented with or without the GPM in the data path. The
STRS architecture supports the separation of the RFM and SPM data paths from the GPM.
Giving the GPM access to the data path as an optional capability rather than a required
capability allows for anore efficient implementation for medium and small mission classes and
improves the overall performance for ndarm implementations. If spacgialified GPM
components mature with the performance capabilities required for signal processing, the GPM
can «ist within the data path and take on more sigmacessing functionality, increasing
flexibility.

STRS Radio Startup ProcesBhe startup of the STRS infrastructure is expected to be initiated

by the STRS platform boot process that it can receivand send external commands and
instantiateapplications. In order to control an STRS platform at pewerand to recover from

error conditions, an STRS platfolimto have a known powarp condition that sets the state of

all modulesTo support upgrade®tthe OE, an STRS platform requires the ability to alter the

state (boot parameters) and/or select a boot image. The exact mechanisms and procedures used
will be platform and mission specific but need to be sufficient to support upgrades to OE
componentssuch as the OS, BSP, and STRS infrastructure.

4.1.3 Interfaces
4.1.3.1 External Interfaces
There are several key external interfaces in this architecture:

Host TT&C.

GroundTest.

Data.

Clock.

Antenna.

Direct current DC) power.
Thermal.

=4 =4 =4 4 -4 A8 -

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

330f 154

NASA-STD-4009

The host TT& interface represents the typically ldatency, lowrate interface for the

spacecraft (or other host) to communicate with the radio. The host telemetry typically carries all
information sourcedvithin the radio. This type of information traditionallyaalled the

telemetry data and includes health, status, and performance parameters of the radio as well as
the link in use. In addition, this telemetry often includes radiometric tracking and navigation
data. The command portion of this interface contamesimformation that has the radio itself as

the destination of the information. Configuration parameters, configuration data files, new
software data files, and operational commands are the typical types of information found on this
interface.

TheGroundTest I nterface pideviedds vaefivdeveltdbpmemtdi o
used for grounébased integration and testing functions. It typically provideslixgl access to

internal parameters not typically available to the Spacecraft TT&C Interft can also provide

access when the GPM is not functioning (i.e., during boot).

The Data Interface is the primary interface for data that are sourced from the other end of the
link and for data that are sunk to the other end of the link. This inteiaagparate from the

TT&C interface because it typically has a different set of transfer parameters (protocol, speeds,
volumes, etc.) than the TT&C information. A common interface point in the spacecraft for this
type of interface is the spacecraft sedite recorder rather than the spacecraft command and
data-handling (C&DH) subsystem. This interface is also characterized by medium to high
latency and high data rates.

The Clock Interface is used to input to the radio the frequency reference sufticismpporting
navigation and tracking. This type of input frequency reference is essential to the operation of
the radio and provides references to the SPM and RFM.

The Antenna Interface is used to connect the electromagnetic signal (input or outpet) to
radiating element or elements of the spacecraft. It also includes the necessary capability for
switching among the elements as required. Steering the elements, if a function of the overall
telecommunications system, is possible through this intetfaté, is not typically employed
because of overall operational constraints.

The Power Interface, which is not included on the diagram, is described as part of this
specification at the highest levels. The Power Interface defines the types and coofiitiens
input energy to power the radio.

4.1.3.2 Networking

A networking interface does not necessarily map directly to the SPM, GPM, or RFM. The

networking interface might handle only spacecraft TT&C data or both spacecraft TT&C data
and radio data. THs architecture allows for those capabilities.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

34 of 154

NASA-STD-4009

4.1.3.3 Internal Interfaces

To support the overall goals of the architecture, the internal interfaces (GPM system bus, GPM
RFM control, SPMo-GPM test, frequency reference, and data patiguldbe well d@umented
and available without restriction.

The GPM System Bus (orange lines in figgrprovides the primary interconnect between

elements of the GPM. The GPM System Bus may provide an interface between the
microprocessor, the memory elements, and ttereal interfaces (TT&C and Test) of the GPM.

The GPM System Bus is the primary interface between the GPM and the SPM, as shown in the
interconnection with the major SPM processing elements. Finally, the GPM System Bus provides
the interface by which theprogrammable and reconfigurable elements of the SDR are

modified. It supports both the read and write access to the SPM elements, as well as the
reloading of configuration files to the FPGAs.

The interface between the GPM and the RFM is primarily a odstatus interface. Various

RFM elements are controlled by the set of GPM RFM control lines (blue lines in 3)gure

Coming from the System Control block in the GPM, this control bus can be either fixed by the
System Control function or programmed by &M software and validated and routed by the
System Control function. It is important to have a hardwaased confirmation and limiheck

on the software controlling any RFM elements. The System Control module of the GPM provides
this functionality, tha keeping the GPM RFM Control bus within operational limits.

The Ground Test Interface (green line in fig@jgrovides specific control and status signals
from different modules or functions to the Ground Test Interface block. This interface is used
during development and testing to validate the operation of the various radio functions. This
interface is very specific to the implementation and realization of the different modules.

The Frequency Reference Interface provides an important interface behgd@RM and the

SPM functions. It ties the two modules together in a way that allows for the SDR to implement
tracking and navigation functions. The characteristics of this interface are defined by the various
amounts of tracking accuracy that are requifer the SPM to accomplish. This interface can be

as simple as a single, common frequency reference that is conditioned from an outside source
and distributed in the least degrading fashion possible to the SPM.

Finally, the data paths are the variousedms of bits, symbols, and RF waves connecting the
major blocks of the primary data path. For any particular implementation, the data path or
bitstreams are defined by the particular application implemented in the functional blocks. The
interface betweerhe RFM and SPM should be well defined and have characteristics suitable for
that level of conversion between the analog and digital domains.

The hardware architecture can be further specified in a manner that is important for

implementers to consider afallow, if the implementation dictates the necessity of particular
components. Details of the GPM, SPM, and RFM are provided in subsequent sections.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

350f 154

NASA-STD-4009

4.2 Module Type Specification
4.2.1 GeneralPurpose Processing Module

Figure 4, GPM Architecture Detés, provides a closeup of the GPM detail. The GPM consists of
one or more general purpose or digital sigimbcessing elements and support hardware
components, embedded OS, software applications and interfaces to support the configuration,
control, and sttus of the radio. The number of processing elements and the extent of support
hardware will vary depending on the missidass processing and datendling requirements

from a single system on a chip implementation for smaller mission classes to riogiigaé
replaceable units (LRUSs) for the largest mission classes. In addition, the fault tolerance
requirements can also increase the number of hardware processing elements, support hardware
components, and interface points required to meet the rangssibmclasses. The majority of
processing functions of the GPM will be under software control and supported by ahéDs.

are cases, depending on the datndling speeds, that require the uss@pbaratespecialized
support hardware (FPGA or ASIC chjas alleviate the burden on the processing elements.
Such specialized support hardware could include encryption, packet routing, and network
processingtype functions.

4.2.1.1 GPM Components

The GPM contains, as necessary, a GPP and various memorynétegseshown in figuré.
Depending on the particular mission class, not all memory elements are required. The GPP will
typically be implemented as a microprocessor, but it could take many forms, depending on the
mission class. Because the GPM is the printamntrol component of the radio, it is a required
module for an STRS radio. A description of each element follows.

The GPP functions include the OE, the HAL, and potentially application functions. The OE
contains the STRS infrastructure, which provithesfunctionality for the interfaces defined by
the STRS API specification. The OE also contains the OS and the POSIX abstraction layer.

The Persistent Memory Storage element holds both the permanent (e.g., programmable read

only memory (PROM)) and reproga mma bl e code for the GPP el eme
this code is implemented using a reprogrammable technology, such as electrically erasable,
programmable reaenly memory (EEPROM). It is also possible, but not typically qualifiable, to
implement ts code storage in Flash memory.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

36 0f 154

NASA-STD-4009

Ground Test
Interface General Purpose Processor

Waveform /

Application
Host/ TT&C
Interface Low Speed Radio

Operating Signal Configuration|
Environment f & System
o Processing Co):nrol
Memory

Persistent
Memory

Figure 40 GPM Architecture Details

The Persistent Memory also provides the reprogrammable storage for the SPM FPGA elements
(i.e.,configurable hardware designThe GPM is responsible for programming and scrubbing

theSPM FPGAs and therefore contains the appropr
block is typicallyymplemented using a nonvolatile memory technqlsggh as EEPROMbut

could, in particular implementations, be implemented with PROM technology.

The Wok Area Memory element is provided as operational, scratch memory for the GPP
element. This memory element is implemented in concert with the GPP element and may contain
both data and code, as appropriate for the execution of the radio application runrtimeg

GPM.

Finally, the GPM contains a System Control element to control and moderate the GPM System
Bus. This element provides the necessary control for the System Bus including the various
memory and SPM elements interfaced by the System Bus. lomdiid System Control

element provides a validated interface to the RFM hardware via the GPM RFM Control
Interface. As the software running on tBEPelement commands the RFM elements into certain
states, those commands are interpreted by the SystemolGgatent and validated in a manner
that will prevent damaging configurations of the REbr example, tying the transmit amplifier
directly to the receive amplifier, bypassing the diplexer element. This level of validation in the
GPM-to-RFM interfacesvould preventdamage tdhe radio from a software bug. The System
Control element is typically implemented by a-neprogrammable (irflight) FPGA allowing

for flexibility between instantiations of a particular implementation.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

370f 154

NASA-STD-4009

4.2.1.2 GPM Functions

TheGPM will provide the overall configuration and control of the STRS architecture and may
include any or all of the following functions:

a. Management and Control
(1) Module discovery
(2) Configuration contral
(3) Command, control, and status
(4) Fault recovery
(5) Encrypton.
b. STRS infrastructure, radio configuration and control
(1) Radio control
(2) System management
(3) Application upload management
(4) Device contral
(5) Message center
External network interface processing
d. Internal data routing
e. Waveform data link layer
(1) Medium Acces€ontrol (MAC) and Logical Link Control (LLC) layer
(2) Physical layer processing
f. Onboard data switch

o

42.1.3 GPM Interfaces

a. TT&C Interface

b. Ground Test Interface

c. Provides programmable generplirpose input output (GPIO) to support
(1) Interrupt source/sik.
(2) Application data transfer.

d. Provides control/configuration interfaces
(1) RFM, antenna, power amplifier, and SPM.

e. System Bus interface.

4.2.1.4 GPM Requirements
(STRS2) The STRS OE shall accesschrmo dul eds di agnostic i nformat

(STRS3) Seltdiagnostic and fauliletection data shall eated for each module so that it is
accessible to the STRS OE.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

380f 154

NASA-STD-4009

(STRS109) An STRS platform shall have a GPM that contains and executes the STRS OE and
the control portions of the STRS appliceis and services software.

4.22 SignalProcessing Module

An SPM is optional for an STRS platform. The SPM may implement the signal processing used to
transform received digital signals into data packets and/or the conversion of data packets into
digital signals to transmit. The complexity of this module is based on the applications and data
rates selected for a mission. The SPM modules contain components and capabilities to
manipulate and manage digital signals that require higher processing capalititieghat

supplied by the GPM. Thenfigurable hardware desigarchitecture describes a common

interface for the application on the SPM, as described in se6tidiigure 5, SPM Architecture

Details, illustrates the SPM module detalils.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

390f 154

NASA-STD-4009

System
Control

Clock
Distribution

High Speed
Digital Signal

Data Processing
Formatting

Spacecraft Data
Data Buffer/
Interface Storage

Waveform

Figure 56 SPM Architecture Details

4.2.2.1 SPM Components

The SPM will initially be implemented primarily with FPGAs, DSPs, reconfigurable processors,
ASICs, and other integrated circuits. However, technologies will change over time, so the
specific implementan is left to theSTR$latform provider.

It is also anticipated that STRS platforms may use dedicated SPM slices for specific applications
and technologies. For example, a dedicated global positioning system (GPS) receiver slice can
complement the exence of reconfigurable SPM slices in the same radio. The dedicated slice
offloads demands on the less specific SPM. If an STRS platform contains an SPM slice, the slice
should meet the module interface specifications for control and configuration andrhave

interface with the GPM via the GPM System Bus and the-t8RBPM test interface. These two
interfaces work in concert to provide a control and reprogramming path to the SPM from the
GPM and the application running on the GPM.

APPROVED FOR PUBLIC RELEASEd DISTRIBUTION IS UNLIMITED

400f 154

NASA-STD-4009

4.2.2.2 SPM Functions

The SPM performs the digital sigaatocessing functions, which are used to convert symbols to
bits (and vice versa). These functions are typically implemented on FPGAs, DSPs, or ASICs. It is
recommended that these devices be reconfigurable and reprogkdenbeause this allows for

new applications to be implemented on the SDR in the future without a hardware redesign.
However, missiospecific requirements may dictate that the application be implemented on a
nontreprogrammable hardware device.

In addition to the digital signaprocessing functions, a datarmatting function igypically

providedto convert blocks of data stored in the data storage element into bitstreams appropriate
for encoding into symbols (and vice versa). In many cases, it is possibiplement the data
formatting function in the same device as the digital sigmatessing function, but that is an
implementation detail dependent on the mission class.

A data storage element is used to provide a queuing buffer between the dédaerdaad the
bitstream coders and decoders. This data storage function can be implemented in either volatile
or nonvolatile memory, depending on the requirements of the mission implementation.

An SPM may implement any or all of the following digital comication functions depending
upon the mission waveforms:

71 Digital up conversiohi nt er pol ati on, filtering, and A
of baseband samples to obtain an IF or RF output sample stream, appropriate for
digital-to-analog conversion.fis is typically the last transmit function implemented
in the SPM, and the output samples are sent to the RFM.

91 Digital down conversiodmu |l t i pl i cati on with @Al ocal osc
filtering IF or RF samples to obtain a baseband output sastpbam. This is
typically the first receive function implemented in the SPM, with input samples
coming from the analotp-digital conversion in the RFM.

1 Digital filteringd averaging, lowpass, highpass, bangpass, polyphase, and other
filters used for puls shaping, matched filter, etc. This may overlap with some of the
functionality in the Up and Down Conversion.

9 Carrier recovery and tracking retrieval of the waveform carrier within the receive
sample stream. Typical SPM functions for carrier recoveryuhelshifting the
recovered carrier frequency to compensate for local oscillator variations and
Doppler shifts in the link.

1 Synchronization (data, symbol, eécglignment of received samples with symbol and
data boundaries. There may be some integratioh thi¢ Digital Down Conversion
and Carrier Recovery and Tracking functions.

1 Forward error correction coding encoding transmit data so that receive data errors
may be corrected to some level, enhancing the waveform performance.

9 Digital automatic gain controfAGC)Y scaling of the receive samples to optimize
downstream operations.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

410f 154

NASA-STD-4009

1 Symbol mapping (modulatiagh}ranslating transmit data bits to modulation symbol
samples.

1 Data detection (demodulatiam}ranslating receive symbol samples to data bits.

1 Spreading and espreading a form of encoding data to obtain certain energy
dispersion in the frequency domain.

1 Scrambling and descrambliiga form of encoding data to ensure a certain level of
randomness in the digital data stream, usually for synchronization of theeecei

1 Encryption and decryptiana form of encoding data for security purposes.

1 Data Input/Output (1/0O) (higtspeed direct from or to source or sidkjhterface for
transmit and/or receive data to come in or out of the module. This may require
buffering and eme protocol handling.

4223 SPM Interfaces

The SPMés functions and figuxeb. dnteriaaes showmindudd aces a
those common to all module types as well as those specific for the SPM. TheseeSHM

interfaces may not all beequired for some missions. Note that the implementation of these

interfaces may combine two or more on one physical transport. For example, the Data Interface

and Control and Configuration Interfaces may both use the same physical Serial®apid

connedon.

1 Datal/OtoorfromRFMThi s is the digital sample str
DACs for transmission, and the digital sa
the DACs and ADCs are preferred to be a part of the SPM, then this interface is
replaced withanalog baseband or IF signals.

1 Waveforncontrol and feedback to RFMThis interface will be waveforolependent.

It may be used, fazxample, to send feedback to an AGC or control frequency
hopping.

1 Data interface external to the radicHigh-datarate wavebrmsmay need a direct
interface to the SPM if the GPM is not designed to handle the data.

1 System busData to or from GPM This interface exchanges the packetized data for
transmission and reception.

1 Control and configuration from GPMWaveformoads and reonfigurable
parameters are managed through this interface.

1 Test and status to GRMTests are initiated through this interface by the GPM, and
results are returned. This is a more basic interface (electrically and protasel)
than the Control and Configation interface.

1 Radiometric tracking.

The HIDis tocontain the characteristics of each reconfigurable device. Reconfigurable capacity
is usually measured by the number of FPGA gates, logic elements, or bytes. This information can

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

42 of 154

NASA-STD-4009

be used by futurBTRSapplication developers to determine the waveforms that can be
implemented on a given platform.

4.2.3 Radio Frequency Module

The RFM handles the conversion to and from the carrier frequency, providing the SPM and/or
the GPM with digital baseband or IF sigls, and the transmission and reception equipment with
RF to support the SPM and GPM functions. Its components typically include DACs, ADCs, RF
switches, up converters, down converters, diplexer, filters, LNAs, power amplifiers, etc. Current
and neartermRF technologies cannot be expected to allow multiband operation using a single
channel RFM, and thus multiband radios will require the use of multiple RFM slices. The RFM
provides a band of frequency tunability on each slice. This tunability can be isottwrdrolled
through the provided interfaces.

The RF module handles the interfaces that control the final stage of transmission or first stage of
reception of the wireless signals, including antennas, optical telescopes, steerable antennas,
external poweamplifiers, diplexers, triplexers, RF switches, etc. These external radio

equipment components would otherwise be integrated with the RFM except for the physical size
and location constraints for transmission and reception. The interfaces are printarily t

associated control interfaces for these components. The RFM HID encompasses the control and
interface mechanism to the external components. The focus of the RF HID is to provide a
standardized interface to the control of each of these devices, to sgizehthe operation of the

radio with any of these devices.

The other primary capability of the RFM is the conditioning and distribution of the frequency
reference as defined by the Frequency Reference Interface. This provides a common reference

for the FM and SPM modules to enable the tracking and navigation functiobgigally
provided bySDRsFigure 6, RFM Architecture Details, illustrates the RFM module detalils.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

43 0f 154

NASA-STD-4009

Variable
i Gain / Test & Aén;ﬁ?rg?
requency Status Interface
L1
Clock
Interface
Analog to i
Digital Receive RF
Antenna
Interface
Digital to Transmit RF
Analog
RF Module (RFM)

Figure 60 RFM Architecture Details

4.2.3.1 RFM Functions
The RFM transirms the antenna signal to or from a signal usable to the radio. The RFM
functions are likely to include the following:

a. Frequency conversion and gain control

b. Analog filtering
c. Analogto-digital and digitalto-analog conversion
d

. Radiometric tracking

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

44 0f 154

NASA-STD-4009

42.3.2 RFM Components

The RFM can be implemented with a variety of integrated circuits. The control of these circuits
can be implemented with a variety of different component technologies including ASICs, discrete
electronics, programmable logic devicesluding FPGAs and DSPs, or even microprocessors.
The choice of technologies is left up to the developer of the particular implementation. It is
expected that the control of the devices will become more sophisticated over time and that the
level of controlwill increase, resulting in more complex control circuitry and logic devices being
used.

4.2.3.3 RFM Interface

a. External RF interface(s) to the radio

b. Provides read and write access to interface registers to monitor and perform control,
status, and failre and faukrecovery functions (e.g., via RI2 or Space Wire).

(1) Control (power level tunability, frequency tunability, antenna parameter
tunability, etc.)

(2) Status (report status of components and system operation)

(3) Failure and faultrecovery functionsdetect component or system failure and
determine appropriate action)

c. Provides diagnostic test registers
d. Provides I/O for exchanging digitizedaveformsignal data

4.2.3.4 RFM Requirements

(STRS6) The STRS platform provider shall describe, in thB Hbcument, the behavior and
performance of the RF modular component(s).

The behavior and performance of the RF modular components should be sufficiently described
such that future waveforoevelopments may take advantage of the RF capability and/orraccou
for its performance. Information in the HID may include such items as center frequency, IF and
RF frequency(s), bandwidth(s), IF and RF input/output level(s), dynamic range, sensitivity,
overall noise figure, AGC, frequency accuracy and stability, esgliencytuning resolution.

4.2.4 Security Module

The STRS architecture has been designed to address security concerns as part of the
architecture. Although this section is currently not complete, the goal is to address the security
services required &m an SDR. This approach supports the evolutionary nature of the STRS
architecture. It is expected that this section will be expanded as new technologies and
operational modes are developed or extended.

The architecture will support selectable dgaotection services for those users needing them,
including both confidentiality and authentication. Missions may select security options provided
by the infrastructure or may develop their own.

APPROVED FOR PUBLIC RELEASE & DISTRIBUTION IS UNLIMITED

45of 154

NASA-STD-4009

Theauthentication of commands sent to SDRs is supported, ingladanging the

configuration or uploading new programs for either the infrastructure or new applications. The
security section of the architecture will include support for key management, encryption
standards, and mitigating threats other than the inforamaand communication security threats
currently identified.

4.2.5 Networking Module

The STRS architecture has been structured such that networks can be implemented in an SDR;

that is, an SDR can be a node in a network. The SDR may be connected toraoushesing

the appropriate logical and physical interfaces that may be wired and/or wireless. The STRS
architecture can accommodate network protocols as services that can be made available to
applications and devices. STRS supports the ability to upleadsoftware and dynamic

hardware images. Therefore, advancements and replacement of existing protocols can be
accomplished without affecting a spacecraftos

4.2.6 Optical Module

The STRS architecture supports the use of optical coications in SDRs. The use of optical
communications techniques pose challenges in many areas but optical communications also has
the potential for great benefit. STRS interfacing to optical communication equipment follows the
same techniques shown in igitation with highdatarate hardware. The OM would be

controlled through the STRS HAL interface that allows configuration and control of the digital
components in the module, which abstracts the optical functionality.

4.3 Hardware Interface Description

The STRS platform provides to provide an HID, which describes the physical interfaces,
functionality, and performance of the entire platform and each platform module. The HID
specifieghe electrical interfaces, connector requirements, and all physecalirements for the
delivered radio. E & ant descigbdtielmedils fundtioralityeabds t r a c t
performance. In this manne8 TRSapplication developersanknow the features and limitations

of the platform for their applications. The inforrmat in the HID provides the knowledge for

NASA and others to integrate and test the hardware interfaces. The information in the HID may
allow future module replacement or additions without the design of a completely new platform.
For example, a Security Male could be added that was not originally planned, or a fethow
mission could use a different frequency band and only require an RFM change.

In addition to the GPMSPM, and RFM HID descriptions and requirements stated within each
module section, thidllowing interface descriptions and requirements are also specified for an
STRS platform.

(STRS4) The STRS platform provider shall describe, in the HID document, the behavior and

capability of each major functional device or resource available for us@\msform services,
or other applications (e.g., FPGA, GPP, DSP, or memory), noting any operational limitations.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

46 of 154

NASA-STD-4009

(STRS5) The STRS platform provider shall describe, in the HID document, the
reconfigurability behavior and capability of each reconfigurablaponent.

The description of the behavior and capability of functional devices availaBIER&

application developers or reconfigurable components may include device type, processing
capability, clock speeds, memory size(s), types(s), and speed(®),amoticonstraints, as well

as any limitation on the number of configurable hardware design reloads, partial reload ability,
built-in functionality, and any corresponding restriction on the number of gates.

(STRS7) The STRS platform provider shall deseriin the HID document, the interfaces that
are provided to and from each modular component of the radio platform.

The specific modular components or hardware slices of an STRS radio will vary among different
implementations. The STRS platform provideBdRSntegrator is expected to describe each
modular component and their respective physical and logical interfaces as described in this
section.Table 1, STRS Module Interface Characterizatmovides typical interface

characteristics that should baedluded when identifying external interfaces or internal interfaces
between modules for STRS.

Table 10 STRS Module Interface Characterization
STRS Module Interface Characterization Table

Parameter Description and Comments
Interface name (data, coaly DC power, RF, security,

Name etc).

Interface type Point to point, poirtmultipoint, multipoint, serial, bus,
other

Implementation level Component, module, board, chassis, remote .node

Reference documents and |Applicable documents for interfaségandards or

standards description of custom interfaces

Notes and constraints _/ariar?ces from standards, physical and logical functig
limitations

Transfer speed Clock speed, throughput speed

Signal definition Description of functionality and intended use

Physical Implementation

Technology For example, GPP, DSP, FPGA, ASIC, and descriptid

Connectors Model number, pin out (incl. unused pins)

Data plane \Width, speed, timing, data encoding, protocols

Control signals, control messages omtnanding,

Control plane .
interrupts, message protocol

Functional Implementation
Models Data plane model, control plane model, test bench mg
\Voltages, currents, noise, conducted immunity,

Power L

susceptibility
APIs Custom or standard, particular to OS environinen
Software Device drivers, development environment, and tool ch

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

47 of 154

NASA-STD-4009

STRS Module Interface Characterization Table
Parameter [Description and Comments
Logical Implementation

Addressing Method, schemes
Channels Open, close

Connection type Forward, terminate, test

4.3.1 Control and Data Interface

The control and data communtaans buses and links between modules within the i@dido

be described by the STRS platform provider to the level of detail necessary to facilitate
integration of another vendorthedEEED38dinleréace | f
for exampé, this will be specified in the HID with appropriate connector and pinout information.
Any nonstandard protocols usshdouldalso be specified. In some cases, this may be handled by
the software HAL. Module interfaces will be completely described, imgjudiy unused pins.

(STRS8) The STRS platform provider shall describe, in the HID document, the control,
telemetry, and data mechanisms of each modular component (i.e., how to program or control
each modular component of the platform, and how to usecesa each device or software
component, noting any proprietaapd nonstandaraspects).

Besides the interface descriptions already provided for each modular component, developers
should provide specific information necessary for fusif& Sapplicationdevelopers to know

how to interact with the command and control aspects of the platform. The description of the
control, telemetry, and data mechanism of each modular component should facilitate the porting
of the application software to the platform.

4.32 DC Power Interface

The DC power interface description for the radio has two parts: (1) the platform as a supplier to
the various modulesnd (2) the power consumption of the different modules, if multiple
modules are provided.

Table 2 Exampléd DC Pawver Interface (Platform Suppliedjhows an example listing of a

platform DC power interface. There are four distinct sets of power requirements for the platform
shown.For each nodule delivered with the radio, as well as those built by other ventthers,

HID is tospecify the needed voltages, currents, and connections. Voisgtxbe specified

with a maximum and minimum tolerance, and associated curmeat®be specified with

nominal and maximum values. Connectors for DC p@seitobe specified,ncluding pinouts.

If power is routed through a multipurpose connector, such as a backplane connector, then the
pins actually usedre tobe documented. Power is a limited commodity for most missions, and
understanding the radio platform power needs idaalt

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

48 of 154

NASA-STD-4009

Table 20 Exampled DC Power Interface (Platform Supplied)

Parameter Values

Voltage available 115V +25V |+5V +15V

Maximum current/chassis 2A 1.7A 3A 2A

(platform)

Maximum current/slot (module| 1 A 1A 1A 1A

Backplane supply pins 17, 19 59, 61 |44, 46,48 21, 23
Backplane return pins 18, 20 60, 62 |43,45,47| 22,24
Connectortype | mmemmmeem | e [| e

Voltage ripple 100 mVpp 1 mVpp | 5 mVpp 100 mVpp

Notes Slot 1 and 2 only --------- | -=------- Slot 1 and 2 only

(STRS9) The STRS platform provider shall describe, in the HID document, the behavior and
performance of any power supply or power converter modular component(s).

4.3.3 Thermal Interface and Power Consumption

The power consumption and resulting heat generati@areprogrammable FPGA will vary
according to the amount of logic used and the clock frequency(s). The power consumagtion
not be constant for each possible waveform that can be loaded on the platfolaTR&e

platform provider should document the nmaxim allowable power available and thermal
dissipation of the FPGA(s) on the basis of the maximum allowable thermal constraints of
FPGA(s) of the platfornf-or human spaceflight environments, touch temperature requirements
may limit dissipation further; threfore, these reductiorare tobe factored into the given
dissipation limits.

(STRS108) TheSTRSplatform provider shall describe, in the HID document, the thermal and
power limits of the hardware at the smallest modular level to which power is cedtroll

5. APPLICATIONS

5.1 Application Implementation

As shown idigure 7, Waveform Component Instantiation, an example STRS platform consists of
one or more GPMs with GPPs, and optionally one or more SPMs containing DSPs, FPGAs, and
ASICs. Applicatiorfwaveform and service) components loaded and executed on these modules
provide the signaprocessing algorithms necessary to generate or receive RF signals. To aid
portability, the applicationgre touse the appropriate infrastructure APIs to access pitaif
services. Using ndirect to hardwareo access
application to a platform with different hardware. The STRS infrastructure provides the APIs

and services necessary to load, verify, execute, change paramat@isate, or unload an
application. The STRS infrastructure utilizes the HAL to abstract communications with the
specialized hardware, whereas the HID physically identifies how modules are integrated on a
platform.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

49 of 154

NASA-STD-4009

Waveform
Component

Waveform Board
Control and STRS APIs Support

Services Package
STRS
Infrastructure

Waveform]
Component| i G Drivers

A

Waveform Waveform
Component r— Component
C D

General-purpose Processing Module

Figure 70 Waveform Component Instantiation

(STRS10) An STRS application shall use the infrastructure STRS APl and POSIX API for
access to platform resources.

(STRS11) The STRS infrastructure shall use the STRS platform HAL APIs to communicate
with application components on the platfornesiplized hardware via the physical interface
defined by thesTRSplatform provider.

5.2 Application Selection

STRS [atform providers have the option of providing telemetry values to indicate what types of
applications are installed. The method foresging the application will be a combination of the
platformbébs capabilities as well as the specif
interfaces in sectioB.

STRS specifies two types of configuration files: a platipetific component, dran
applicationspecific component. An applicati@pecific configuration file specifies information
used to initialize an STRS application. Sec8awontains further discussion of platform and
application configuration files.

5.3 Navigation Services

The STRS architecture allows STRS radios to provide radiometric tracking and navigation

services that are integrated with communication services. Radiometric tracking is the process of
measuring the characteristics of radio signals that have been transifutiezhtially over

sever al l egs) in order to extract information
time of transit. A radio has the fundamental component needed for trackiraglio signal. The

SDR simplifies the navigation architecturechuse it minimizes mass, power, and volume

APPROVED FOR PUBLIC RELEASEd DISTRIBUTION IS UNLIMITED

500f 154

NASA-STD-4009

requirements while maximizing flexibility. An SDR provides the flexibility to respond to different
mission phase requirements and to dynamic application requirements where signal structures

may change. This ib¢ fundamental reason for considering the implementation of an SDR with

tracking and navigation functionality.

5.4 Application Repository Submissions

The STRS architecture facilitatkge use of reusable and highly reliable applications. Highly
reliable and reusable applications require good coding practices, good documentation, and
thorough testing. The documentation and application artifacts are to be submitted to the NASA
STRS application repositoryhe use of the artifacts in the NASA STRS apphicagpository

will be subject to the appropriate license agreemefitserefore, the agreements defining the
release, distribution, and ownership of the artifacts are to be submitted to the repository
including license agreements, type of release, andestyictions. Types of releases are
discussed ilNPR 2210.1, Release of NASA Softwad&SA will provide th&TRSapplication
developer information on the requests and distribution of items and lessons learned using the
application. If theSTRSapplicaion developer receives independent requests for the application,
this request should be forwarded to the NASA STRS application repository manager to assure
process consistency.

The goal of the NASA STRS application repository is to reduce future ajoplidavelopment

time and porting time sinc8TRSapplication developers will have access to validated code. The
STRS application repository is an archive of the develepatigurable hardware desiggmd

software for the various applications. The repositalowsSTRSapplication developers access

to existing STRS application artifacts that have been populated by NASA and STRS application
developersThe documentation of STRS application behavior should includ&TiRS
applicati on de v enlobtie&TRS spplicatigrbvelede ppticatibn Control

API methods as described in sectib81.

(STRS12) The following gplication development artifacts shall be submitted to the NASA
STRS application repository.

(1) High-level system or component softwanodel

(2) Documentation of applicatioconfigurable hardware desigxternal interfaces
(e.g., signal names, descriptions, polarity, format, data type, and timing
constraints)

(3) Documentation of STRS application behavior

(4) Application function sources (e.g-, C++, header filesjery high speed
integrated circuit HDLYHDL), and Verilog)

(5) Application libraries, if applicable (e.gelectronic design interchange format
(EDIF), dynamic link library DLL)).

(6) Documentation of application development environmenttaol suite

A. Include application name, purpose, developer, version, and configuration
specifics

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

51of 154

NASA-STD-4009

B. Include the hardware on which the application is executed, its OS, OS
developer, OS version, and OS configuration specifics

C. Include the infrastructure degation, developer, version, and unique
implementation items used for application development.

(7) Test plas, proceduresand results documentation
(8) Identification ofsoftwaredevelopmenstandards used
(9) Version ofthis Standardised

(10) Information, along with gpporting documentation, required to make the
appropriate decisions regarding ownership, distribution rights, and release
(technology transfer) of the application and associated artifacts.

(11) Version Description Document or equivalent with version numbednsatke
down to the lowest level components.

(12) Documentation of the platform component hardware used bgpiplecation, its
functionand the interconnections. If the component executes an operating system,
document the OS, OS developer, OS version, and Ofyaation.

6. CONFIGURABLE HARDWARE DESIGN ARCHITECTURE

Configurable hardware desige embedded in a hardware device, such as an FPGA.

Configurable hardware design distinguished from software residing in a GPP, which is

generally easier to changehib section addresses the useaffigurable hardware designom

design and development through testing and verification and operations. It addresses aspects of
modetbased design techniques and design for space environment applications.

Proper testingpf configurable hardware desiga critical in the development of reliable and
reusable code. Development tools that enable early development and testing should be used so
that problems can be identified and resolved early in the SDR life cycle. Marwaedlsignal
degradations and SEUs can be simulated to identify potential issues with the waveform and
waveform functions early in development, even before hardware is available. Appdication
implemented in configurable hardwasbouldbe modular with clar interfaces to enable

individual application component simulations and incremental testing.

Theconfigurable hardware desigarchitecture supports the modeling of STRS applications
implemented in configurable hardwaaiethe system, subsystem, and fiamclevels. Model

based design techniques aid in the development of modular application functions. Application
development models done in a platform (or target) independent manner aid in application
testing, reuse, and portability. A platforimdependeninodel (PIM) design can be used to target
different platforms. PIM design flows might include high level models combined with manual
code writing. On resoureeonstrained platforms, optimized code would be written. Or non
resourceconstrained platforms, PIMmay be used to augenerate code. These design flows
can be employed to significantly reduce the porting effort.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

520f 154

NASA-STD-4009

Application portability should be considered in all facets of the design process from concept to
implementation to testing. The codingheitjue of the application is also essential to reduce the
application porting effort. Having defined syntax standardddDLs (e.g., Verilog or VHDL)

makes them appear to be easily portable across devices and software synthesizers, but this is an
incorred assumption. There are many things that can make hardyeseiptionlanguages

hard to port. For example, the use of devspecific fixed hardware logic on the FPGA will
decrease the portability. The use of specialized hardware may be required tbeneatrig
constraints of the application; however, tB€RSapplication developer should document any
application function that uses the specialized hardware so that the effort to port the application
function(s) can be determined. Nbaoleantype logic sich as clock generation can also reduce
portability. One method to decrease the porting effort would be to create a module that does the
clock generation from which the rest of the application functions receive the necessary clock(s).

Development afonigurable hardware desigfor STRS radios should include provisions for
mitigating space environmental effects such as SEUs-tdgarapplication of static random

access memory (SRAMased FPGAs may require tripfaode redundancy (TMR),

configuration memy scrubbing, and other mitigation techniques, depending on the intended
mission environment and desired reliability. Commercial design tools are becoming available to
aid in this process and some newer FPGAs have versions available with embedded TMR.

A key feature of SDRs is that they can be reconfigured after deployment. The ability to load new
applications and services will benefit missions in several ways, including using one SDR (instead
of several separate radios) to handle different applicationsdoious phases of a mission, some
planned and some unplannédh STRS platform should receive STRS application software and
configurable hardware desigimpdates after deployment.

6.1 Specialized Hardware Interfaces

Standardizing and documenting the inéed from the waveform applications on the GPP to the
portion of the waveform in the specialized processing hardwah as FPGASs intended to
provide commonality among different STRS platforms and to aid portability of application
functional componentimplemented inonfigurable hardware desigfigure 8, High-Level
Software andConfigurableHardwareDesignWaveform Application Interfaces, depicts the
high-level interface relationship between GPM, SPM, and RFM modules in an STRS radio.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

530f 154

NASA-STD-4009

Radio Platform

Signal Processing Module
General-purpose
_Processing Module e

[Platform Specific Wrappeﬁ

STRS OE

Waveform
Application
Waveform [=5]
lication ‘ i — HID —»
Aop [T | | J
. S
| HID |
3 DSP
HID | [{)
l HID :
e |
Radio Fre_gugncy Module T wavefom
DA : Application
L RFM
D 7] Interface
Tuner/Frequency | I
Control ' \ >

Figure 80 Notional High-Level Software andConfigurable Hardware Design
Waveform Application Interfaces

The STRS architecture provides a common mechanism for the software to instantiate, configure,
and execute the software acohfigurable hardware desigapplications on various platforms

using different hardware devices. Reconfiguration may include changing the parameters of
installed applications and uploading new applications after deployment.

The application accepts configuration and control commands from tiv &id uses STRS

APIs or POSIX APIs that interface to the device drivers associated with the SPM and RFM
modules. The device drivers communicate via the HAL on the GPM that abstracts the physical
interface specification described in the HID in transferrammmand and data information
between the modules.

For FPGAs, the interface to the application is through a platfspacific wrapper. The
platform-specific wrapper accepts command and data information from the GPM and provides
them to the application. Th#atform-specific wrapper also abstracts details of the platform

from theSTRSapplication developer, such as pinout information. The platfepecific wrapper
should also provide clock generation, signal registering, and synchronization functions,yand an
other nonwaveformspecific functions that the platform requires.

APPROVED FOR PUBLIC RELEASEd DISTRIBUTION IS UNLIMITED

54 0f 154

NASA-STD-4009

Documentation of the platforspecific wrapper is necessary so tBatRSapplication

developers can interface applications to the platform. This documentation should include
detailed tining constraintssuch as signal hold times, minimum pulse widths, and duty cycles.
The signal timing constraints refer to the protocol of a particular interface describing events
happening on a particular clock cycle. For clock generation, one should émtuwhat clock
domains are in the design, how each clock is generated, and the resources that are required.
Signal synchronization describes any additional logic needed when clock domains are changed
across the interface. The signal registering methods tefanyconfigurable hardware design
interfaces between modules and if the input and output were registered, latched, or neither.

(STRS13) If the STRS application has a component residetside the GPMe.g.,in
configurable hardware desigrthen tle component shall be controllable from the STRS OE.

(STRS14) The STRS SPM developer shall provide a platfspecific wrapper for each user
programmable FPGA, which performs the following functions:

(1) Provides an interface for command and data from thd @Rhe waveform
application

(2) Provides the platformspecific pinout for th&TRSapplication developer. This
may be a complete abstraction of the actual FPGA pinouts with only waveform
application signal names provided.

(STRS15) The STRS SPM developeradiprovide documentation on tieenfigurable hardware
designinterfaces of the platforrapecific wrapper for each usprogrammable FPGA, which
describes the following:

(1) Signal names and descriptions

(2) Signal polarity, format, and data type

(3) Signal directon.

(4) Signattiming constraints

(5) Clock generation and synchronization methods

(6) Signatregistering methods

(7) Identification of development tool set used

(8) Any included noninterface functionality

7. SOFTWARE ARCHITECTURE

7.1 Software Layer Interfaces

The STR&@rchitecture is predicated on the need to provide a consistent and extensible
development environment on which to construct NASA space applications. The breadth of this
goal requires that the specification be basedtanfollowing:(1) Core interfaces tat allow

flexibility in the development of application softwaaed (2)HIDs that enable technology

infusion.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

550f 154

NASA-STD-4009

The software architecture model shows the relationship between the software layers expected in
an STR&ompliant radio. The model illustrateset different software elements used in the

software execution and defines the software interface layers between applications and the OE
and the interface between the OE and the hardware platform.

Figure 9, STRS Software Execution Model, represents theaa architecture execution model.
The software model achieves the following objectives:

a. Abstracts the application from the underlying OE software to promote portability of
the application.

b. Within the abstraction layer, minimizes custom routines bygussmmercial
software standard interfaces such as POSIX.

c. Depicts the STRS software components as layers to specify their relationship to each
other and their separation from each other which enables developers to implement the layers
differently accordingo their needs while still complying with the architecture.

d. Introduces a lowelevel abstraction layer between the OE and the platform
hardware.

Note that although software abstraction for general processors is typically accomplished with
board supporpackages and device drivers, the abstraction of hardware languages or
configurable hardware design less defined. The model represents the software and
configurable hardware desigabstraction in this layer.

e.Indicates the relationship between the Sifftware and the different hardware
processing elements (e.g., processor and specialized hardware).

The OE adheres to the interface descriptions providdigjime 9. This Standard provides two
primary interface definitionsas follows (1) The STRS APknd (2)The STRS HAL

specification, each with a control and data plane specification for interchanging configuration
and runtime data. The STRS APIs provide the interfaces that allow applications to be
instantiated and use platform services. These ARIs enable communication between

application components. The HAL specification describes the physical and logical interfaces for
intermodule and intramodule integration.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

56 of 154

NASA-STD-4009

Waveform Applications and High Level Services

POSIX API Subset STRS API

STRS Infrastructure

0s Network Stack

HAL API
BSP Drivers
GPM Specialized HW

Figure 90 STRS Software Execution Model

The STRS softwaegchitecture presents eonsistent set of APIs to allow waveform

applications, services, and communication equipment to interoperate in meeting an application
specificationFigure 10, STRS Layered Structure in UML, represents a view of the platform OE
that depicts the boundagéetween the STRS infrastructure provided byiirSplatform

provider and the components that can be developed byghitg vendors (e.g., waveform
applications and services).

A key enabler of application portability is the removal of applicatiqgreddencies on the
infrastructure that take advantage of explicit knowledge of the infrastructure implementation.
When waveforms and services conform to the API specification, they are easier to port to other
STRS platform implementations.

Figure 10 extend the view of the software architecture from the diagram introducigure 9

to include additional detail of the infrastructure, POSidhformant OS, and hardware platform.
The STRS Software Execution Ma@igure 9) was transformed using the Unifiecolleling
Language (UML). The UML supports the description of the software systems using an object
oriented style. This approach clarifies the interfaces between components, adding additional
detail. Table 3,STRS Architecture Subsystem Key, provides ehkeyéscribes the interaction
between elements of the architecture.

Figure 11, STRS Operating Environment, describes the elements of the detailed OE depicted in
figure 9. In the case that the OS does not support the POSIX subset, the missing fundsonality
to be implemented in the STRS infrastructure. Fiduralso illustrates the inclusion of a POSIX
abstraction layer in the infrastructure. As a note, this abstraction is not only for-2@&iX

OS, but the POSIX abstraction layer would implement &$IR functions required but not
implemented by the OS.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

57 of 154

NASA-STD-4009

==suhgystem== g]
STRS Radio

==subsystem=» g
STRS OE

0. ==gyhaystams= @
==component== =] 0s 1
STRS_Source STRS Application | _7@7

IX

1

Data Source APl \
l ;

1
\(O— =<subsystenm=> o] 1.
STRS API STRS Infrastructure @ ==subsystam=> =]

P HA\I: API HAL
Pl

T

—

STRS_Sink STRS_Sink

0.2
=s<component=> & STEIREE> =l <fsub5y3tem» =] =<subsysterm=> &1 Specialized Hardware
Waveform Dedicated Service Hight Computer External Interface
Interface T
Flight Computer External Port Payload Antenna FPGA Master Clock Other Specialized HW

Figure 100 STRS Layered Structure in UML

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

58 0f 154

NASA-STD-4009

Table 33 STRS Architecture Subsystem Key

Diagram Element Name Explanation

o Composition | A contains X items of type B. B is a part of the
aggregate A. B deenot exist independently from A,
X may be a number or a range fromio n depicted
: bym.Mmd w Mmenayde an asterisk to indicate ng
X upper limit.
B
Generalization B is derived from A. B is a kind of A. B inherits all
A or the properties of AA is a more general case of B.
Inheritance | Since B is more specialized, it frequently contains
T some additional attributes and/or more functionalit
B than A.

Interface | C is an interface provided by B; that is, C contains
II' ; means to invoke behavior that reside8irA uses

interface C to access B.

Y — B Association | A is associated with B. The optional description
Ausesodo indicates that
A fiusesod B.
B Association | D acts upon A, and A responds to D, or possibly v
% versa. D is normallgn actor outside the system.

D

In figure 11 the arrows identify interface dependencies and isolations. The waveform
applications will not directly call the driver API but use the provided STRS API, thus providing
t he fAabstracti on theaapplication frorhtheplatfoenl ps i sol at e

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

590of 154

NASA-STD-4009

Application Level

Waveform Application

Could call STRS OS Abstraction Layer Communicates with STRS API
functions as well as POSIX Calls

STRS Infrastructure

STRS API
POSIX Abstraction Radio Services (Radio Control, RF)
Layer
HAL

— — —————————— —

Kernel Level {

os
‘ POSIX ‘ ‘ Direct Driver Service Support
HW Drivers/BSP ‘ ‘
Registered OS Services Driver API
BSP
Physical Level
Communication GPM Platform Hardware

Equipment

HW 10 Interface

Figure 110 STRS Operating Environment

In table 4,STRS Software Component Descriptions, the different layers of the STRS software
model are described.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

60 of 154

NASA-STD-4009

Table 40 STRS Software Component Descriptions

Layer

Description

Waveform application
and services

Waveform application and services provide the radio GPP
functionality using the STRS infrastructure.

STRS infrastructure

The STRS infrastructure implements the behavior and functional
identified by the STRS API as Was other required radio
functionality.

STRS API The STRS API provides consistent interfaces for the STRS
infrastructure to control applications and services, and for the
applications and services to access STRS infrastructure serviceg

APP API The APP APl is the interface implemented by waveforms and
services whose functions are used by the STRS infrastructure.

POSIX Abstraction | This optional interface (sdigure 12, POSIX-Compliant Versus

Layer POSIX-Conformant O$provides POSIX OS services taeth

waveform application and services on platforms with an OS that
not provide POSIX interfaces.

Radio control service!

These services are responsible for handling the radio commands
telemetry for the STRS. Applications use the STRS interface to
communicate telemetry and receive commands from flight compt

HAL

The HAL provides the device control interfaces that are responsi
for all access to the hardware devices in the STRS radio. The HA
APl is the interface to the software drivers and B&R
communicates with the hardware.

POSIX API

The STRS defines a minimum POSIX AEP for the allowed OS

services. The POSIX AEP can be implemented by either a ROSI
conformant OS or by a POSIX Abstraction Layer in conjunction v
a nonconformant OS.

oS

This is theoperating system that supports the POSIX API and oth
OS services. The POSIX Abstraction Layer will provide applicatic
with a consistent AEP interface that is mapped into the chosen C
functions.

POSIX OS

This is the STRS POSIX AEEonformar portion of the OS.

Direct service suppor]

This layer identifies the ability for the STRS infrastructure to have
direct interface to the hardware drivers on the platform.

HW drivers/BSP

The hardware drivers provide the platform independence to the
sdtware and infrastructure by abstracting the physical hardware
interfaces into a consistent device control API.

Registered OS
services

These are services that are integrated with the chosen OS to prg
services such as MA@yer interface to physical BE¢rnet hardware.

Driver API

OS-supplied APIs are abstracted from applications via the device
control API.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

61of 154

NASA-STD-4009

Layer

Description

BSP

The BSP is the software that implements the device drivers and
of the kernel for a specific piece of hardware. It provides the
hardware astraction of the GPM module for the POStEmpliant
OS. A BSP contains source files, binary files, or both. A BSP
contains an original equipment manufacturer (OBN§ptationayer
(OAL), which includes a boot loader for initializing the hardware :
loading the OS image. Essentially, the OAL is all of the software
is hardware specific. The OAL is actually compiled and linked int
the embedded OS.

HW 1/O interfaces

Device drivers have been created for these physical interfaces.

GPM

This is thegeneal-purposeprocessingnodule on which the STRS
infrastructure executes.

Specialized hardware

This is the physical layer of the hardware modules existing on th
STRS platform.

Figure 12illustrates the difference between a PO$8btformant OS and a nontimrmant OS.

On the left side, the POSIX AEP is provided entirely by the OS. The POSIX APIs are included in
those for the OS. On the right side, the OS is not POSIX AEP conformant but is partially
compliant. The POSIX AEP is shown in two parts. One pamsithe POSIX APIs that are

included in the OS. The other part shows the part of the POSIX AEP that is not provided by the
OS butis tobe provided as the POSBYstractionlayer. The STRS OE includes a POSIX
PSE521conformant OS or POSIX abstraction layer missing APIs.

.r/

POSIX Conformant OS:

POSIX Compliant OS:

POSIX
Compliant
0S

POSIX
Abstraction
Layer

Figure 120 POSIX-Compliant Versus POSIX-Conformant OS

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

62 of 154

NASA-STD-4009

7.2 Infrastructure

The STRS infrastructure is part of the OE and provides the functionality for the interfaces
defined by the STRS API specificatidhe infrastructure exposesstandard set of method

names to the applications to facilitate portability. Although the STRS infrastructure may use any
combination of POSIX, OS, BSP functions, or other infrastructure methods to implement a radio
function, which may vary on differertaforms, the STRS API will be the same towall

portability. The STRS API is the weléfined set of interfaces used by STRS applications to
access specific radio functions or used by the infrastructure to control the applications.

The infrastructure ifomposed of multiple subsystems that interoperate to provide the
functionality to operate the radio. The components shovigume 13, STRS Infrastructure,

represent the highevel subsystems and services needed to control STRS applications within the
radio platform. These services are provided by the platform infrastructure and support
applications as they execute within the radio platform. The infrastructure functions will include
fault management techniques, which are necessary to increase radionedsiahd support
missiondependent requirements. In order to support one of the primary objectives of the STRS
(upgradeability), an STRS radio should be able to receive updated versions of the OE to support
applications developed for newer versionshis Sandard after deployment.

<=components= " POSIX
Data Source API o _
. STRS Application | = e
Data Source API “STES:P' STRS Infrastructure
J WF A)PI T
==subsystems==
[s g o
omman
STRS_Sink STRS_Sink <<suhsystem== and L. 0" «=5ubsystern== <=subsysterm==
Application Manager Control Manager External Interface Flight Computer
Interface
==subsystem==
| [Fem] |
<<comnonem>>{| <<components= “SL{DSYSTEm” E . evice
Waveform Dedicated Service S KEE
HAL]API
=<subsystems== {l 1 ==subsystem== E ==subsystem== {l
4 .
Health Manager Messaging Manager HAL

3

Speclallzed Hardware

<=c0mp0nent>>5 <<cumpunent>>{| <<cumpunent>>5 =scomponent==
Networking Navigation Upload Mission Specific
Fllght Computer > Payload > FPGA Other Spet:lallzed HW
External Port Antenna Master Clock

Figure 130 STRS Infrastructure

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

63 of 154

NASA-STD-4009

7.3 STRS APIs

The STRS APIs provide an open software specification so that the application engineers can
develop STRS applications. The goal is to have a standard API available to cappliaktion
program requirements so that the application programs can be reused on other hardware
systems with minimal porting effort and cost for the applicatigriemented isoftware antbr
configurable hardware designith increased reliability. Sizeyeight, and power constraints

may limit the functionality of the radio by imposing a tradeoff antbadollowing:(1) The size

of the APl implementatiqr{2) The size of other internal operatigrend (3)The size of the

waveforms and services. The t¢he selected GPghouldbe sufficient to contain the OS, the
STRS infrastructure, and the appropriate portion of the waveforms and services to implement the
required mission functionality, along with sufficient margin to support software upgrades. The
STRS APIs are defined to support internal radio commands. The external interface commands,
described in section 9, often use the internal commands defined by the STRS APIs to accomplish
normal radio operations.

The API layer specification decouples thesligctual property rights of platform, application,

and module developers. The API layer allows development and interoperability of different radio
aspects while protecting the investment of the developers. The definitions of the APIs are based
on a set obequence diagrams derived from the use cases identifigghendix B of the
NASA/TP2008214813,STRS Software Architecture Concepts and Analgsciment.

The APIs are defined in the following sections. The APIs are grouped by type to simplify the
description of the APIs while providing the detail for each requirement in tabular form. The

table contains the name, description, calling sequence, return type, any preconditions, any post
conditions, and examples. The examples shown in the table forezpgrement are written

from the point of view of tfeTRSapplication developer. The calling sequences for the
infrastructureprovided APlsare callable from C language implementations of the STRS

applications. If coding is done in C++, the infrastructyseovided API methoddo not belong

to any class and shoudd be defined using exte

Afhandle 1D is an identifier used to control access to applications, devices, files, messaging
gueues, and other similar resourc@&@fe same handle name refers te fame application,

device, file, queue, timer, or service across all applications. For information about eseers
section 7.3.11.

(STRS105) The STRS infrastructure APIs shall have anVIBOC language compatible
interface.

7.3.1 STRS Application-Provided Application Control API

A key aspect of a softwaeechitecture is the definition of the APIs that are used to facilitate
software configuration and control of the target platform. The philosophy on which the STRS
architecture is based avoids thenflict between open architecture and proprietary
implementations by specifying a minimum set of APIs that are used to execute waveform
applications and to deliver data and control messages to installed hardware components.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

64 of 154

NASA-STD-4009

The following APIs exhibit simitdunctionality to aresource interface in th@bject
Management Group (OM@&pftware radio BWRADIQ or Software Communications
Architecture (SCA). The APIs could be implemented using the same Platt@pendent Model
(PIM) as the OMG/SWRADIO or SCA aadlifferent platforrspecific model (PSM) from the
OMG/SWRADIO or SCA. The APIs are further grouped similar to the OMG/SWRADIO as
shown infigure 14, STRS Application and Device Structure

STRS_ControllableComponent O

Ay State

General Purpose Processor

STRS_LifeCycle O

STRS_PropertySet O

STRS_TestableObject O

+APP_Start()
+&PP_Stop)

+APP_|nitializel)

+4PP_ReleaseChbject()

+&PP_Configurel)
+&PP_Ciueryi)

+&PP_RunTest()
+&PP_GroundTest)

T

a3

T

Implementation

STRS Application

Device -
Implementation

|
uses

.

STRS_Appli

cationControl O

STRS_Source O

+&PP_Read)

|+ PP _iiriter)

P

-~
A

STRS_Sink ()

— HAL API O

puy

STRS_Componentldentifier O

#mya : STRS_HandlelD{readOnly
#handleMarme : string{resdCnly ¢

Device API O

+closel)

— +flushi)

+Hoad)

+0pen(]

+zetl=R0)
+zethemoryMapg)
+unlaadd()

|data ar command transfer

Specializéd Hardware

Figure 140 STRS Application and Device Structure

As shown irfigure 14, an STRS application implementation (e.g., waveform) is derived from the
STRS_ApplicationControl API, the STRS_Source API when implementing APP_Read, and the
STRS_Sink APl when implementing APP_Write. The interfaces are implemented in groups so
that STRS_ApplicationControl is derived from the STRS_LifeCycle, STRS_PropertySet,
STRS_TestableObject, STRS_ControllableComponent, and STRS_Componentldentifier
interfaces.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

65 of 154

NASA-STD-4009

STRS requires a C and C++ standard based on ISO/IEC 9899 and ISO/IEC 14882 jvelpect
In the USA, this is INCITS/ISO/IEC 9899:year and INCITS/ISO/IEC 14882:year, respectively,
where the year will change periodically. The year is not included in the requirement so that
obsolete compilers are not mandated. In the USA, the InterNat@omamittee for Information
Technology Standards (INCITS) coordinates technical standards activity between ANSI in the
USA and joint ISO/IEC committees worldwide. INCITS is not included in the requiresment

that the country of implementation may use asipilers.

(STRS16) The STRS Applicatioprovided Application Control API shall be implemented
using ISQIEC C or C++.

(STRS17) The STRS infrastructure shall use the STRS Applicaggromided Application
Control API to control STRS applications.

An OE nay support applications written in either C , C++, or both. An application written for
an OE that supports only C++ will require extra effort to port it to an OE that supports only C
and vice versa.

(STRS18) The STRS OE shall support I88C C or C++ or both language interfaces for the
STRS Applicatiorprovided Application Control API at compiteme.

(STRS19) The STRS OE shall support ISBC C or C++ or both language interfaces for the
STRS Applicatiorprovided Application Control API at rutime.

The same include files are used for either C or C++ to access the appropriate prototypes.

(STRS20) Each STRS application shall contain
#include "STRS_ApplicationControl.h"

(STRS21) The STRS platform providertrrsdlalho ptrioarti
contains the method prototypes for each STRS application and, for C++, the class definition for
the base class STRS_ApplicationControl.

(STRS22) If the STRS Applicatioqprovided Application Control API is implemented in C++,

the STRS applidaon class shall be derived from the STRS_ApplicationControl base class.

For example, the MyWaveform.h file should contain a class definition of thelsm

My Waveform: public STRS_ApplicationControl {é

A sink is used for a push model of passing,dagt is, to write data to the waveform, device,
file, or queue.

(STRS23) If the STRS application provides the APP_Write method, the STRS application shall

contain
#include "STRS_Sink.h"

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

66 of 154

NASA-STD-4009

(STRS24) The STRS platform praoki dher tdhlaal lcomrt @av in
method prototypes for APP_Write and, for C++, the class definition for the base class
STRS_Sink.

(STRS25) If the STRS Applicatiomprovided Application Control API is implemented in C++
and the STRS application provides the APP t&method, the STRS application class shall be
derived from the STRS_Sink base class.

For example, the MyWaveform.h file should contain a class definition of the form
class MyWaveform: public STRS_ApplicationControl,
public STRS_Sink
{e};

A souce is used for a pull model of passing data: to read data from the waveform, device, file,
or queue.

(STRS26) If the STRS application provides the APP_Read method, the STRS application shall
contain
#include"STRS_Source'h

(STRS27) The STRS platfon pr ovi der shal l provide an ASTRS.
method prototypes for APP_Read and, for C++, the class definition for the base class
STRS_Source.

(STRS28) If the STRS Applicatiomprovided Application Control API is implemented in C++
and tre STRS application provides the APP_Read method, the STRS application class shall be
derived from the STRS_Source base class.

For example, the MyWaveform.h file should contain a class definition of the form
class MyWaveform: public STRS_ApplicationCamnt,
public STRS_Source
{e};

If both APP_Read and APP_Write are provided in the same waveform, the C++ class will be
derived from all three base classes named in requiremnR$22, STRE25, andSTR&28).
For example, the MyWaveform.h file shoadohtain a class definition of the form
class MyWaveform: public STRS_ApplicationControl,
public STRS_Sink,
public STRS_Source

{e};
The following state diagrapfigure 15, STRS Application State Diagram, shows that an STRS

application can havearious states during execution. The files for the STRS applicaediobe
accessible before execution can begin.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

67 of 154

NASA-STD-4009

1 STRS_ InstantiateApp causes the deployed configuration file to be parsed and
APP_Instance or the constructor to be called such that th&SipRlication starts in
the STRS_APP_INSTANTIATED state, but it may be transitioned to another state if
specified in the STRS application configuration file.

1 STRS_lInitialize calls APP_Initialize on the appropriate STRS application.

1 APP_lInitialize transibns the STRS application to the STRS_APP_STOPPED state
upon successful completion.

1 STRS_Start calls APP_Start on the appropriate STRS application.

1 APP_Start transitions the STRS application from the STRS_APP_STOPPED state to
the STRS_APP_RUNNING stapmon successful completion.

1 STRS_Stop calls APP_Stop on the appropriate STRS application.

1 APP_Stop transitions the STRS application from the STRS_APP_RUNNING state to
the STRS_APP_STOPPED state upon successful completion.

1 STRS_ReleaseObject calls APP elds€Object on the appropriate STRS application.

1 The FAULT state may be set by the STRS application or detected by the fault
monitoring and recovery functions, but any recovery is managed by the STRS
infrastructure or by an external system.

The STRS apiphtion states shown iiigure 15 are the only ones returned when requested by a

call to APP_RunTest with a test ID of STRS_TEST_STATUSTRf@application developer

may define and use any additional internal substates th&@ TRSapplication developesees

fit; however, these substates are not recognized by the infrastructure. The infrastructure may use
any additional states that are deemed necessary.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

68 of 154

NASA-STD-4009

STRS Application State

| - ..
constructor

APH Intialize

/i_, STRS_ReleazeOhject APP_Releaze Ohject [STRS_APP_STOPPED

APP| Start
STRS_Ahortdpp APP_stop

@P
&
Fault detected

{ Fault Recovery i
| FAULT

Fatal Fault

®

Figure 150 STRS Application State Diagram

(STRS_APP_RUNNING]

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

69 of 154

NASA-STD-4009

The following are the STRS Applicatiggrovided Applicéion Control APIs:

APP_Configure()
Description

Parameters
Return
Precondition

Postcordition

See Also
Example

Table 56 APP_Configure()

Set values for one or more properties in the application. It is the responsibil
the application (or device) to determine which properties can be changed ir
which states. The dar manages the propList, preallocating and filling the
names and values before calling APP_Configure. The APl is defined in
STRS_PropertySet. The method is similar to configure() in PropertySet inte
in SCA or OMG/SWRADIO.

9 propList- (in STRS_Properties *) list of name and value pairs

status (STRS_Result)

Storage for the propList with space for sufficient name and value pairs;
sufficient space for each name and value is allocated before calling
APP_Configure.

The appropriately named values are configured. The state is unchanged u
specifically required by the mission.

STRS_Configure

STRS_Result APP_Configure(STRS_Properties * propList)

{
STRS_Result rtn = STRS_OK;

intip;
for (ip= O; ip<propList - >nProps, ip++) {
if (strcmp("A", propList - >VvProps[ip].name)==0){
strncpy(a, propList - >vPropsJip].value,
maxLa);
} else
if (strcmp("B", propList - >vProps[ip].name)==0){
if (myState == STRS_APP_RUNNING) {
rtn = STRS_WARNING;
}else {
strncpy(b, propList - >vProps|ip].value,
maxLb);
} else {
rtn = STRS_WARNING;
}
}
return rtn;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

700f 154

APP_GroundTest()
Description

Parameters

Return
Precondition

Postcondition

See Also
Example

NASA-STD-4009

Table 60 APP_GroundTest()

Perform unit and system testinghich isusually done before deployment. The
testing may include calibratioifhe tests aid in isolating faults within the
application. This method provides more exhaustive testing that is required k
entrusting life and property to an SDR. Application may be in any state, but
certain tests may be restricted to specific st&esperty values may be specifie
or retrieved. The propList may be NULL if it is not used. The caller manage:
propList, preallocating the structure. The caller fills in the appropriate list of
names and any input values and sets nProps to the numizmes in the list
(nProps > 0). The application fills in any output values for those Properties
whose names are specified in the propList. The APl is defined in
STRS_TestableObject. The method is similar to APP_RunTest except that
contains more exteng testing that will be eliminated for actual flight. This
methodmay beinvalid upon deployment.

9 testlD- (in STRS_TestID) number of the test to be performed
1 propList- (inout STRS_Properties*) list of the name and value pairs use:
configure the test, and/or return results.
status or state (STRS_Result)
The propListis to have space allotted for the maximum number of properties
whose values are to be used or returned.
The test is performedThestateis unchangedinless specifically required by
mission.
STRS_GroundTest
STRS_Result APP_GroundTest(STRS_TestID testID,
STRS_Properties *proplList) {
if (testID == 0) {
é
return STRS_OK;
} else {
STRS_Buffer_Size nb = strlen(
"In valid APP_GroundTest argument.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"Invalid APP_GroundTest argument . ", nb);
return STRS_ERROR,;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

71of 154

APP_Initialize()
Description

Parameters
Return
Precondition
Postcondition
See Also
Example

NASA-STD-4009
Table 70 APP_lInitialize()

Initialize the application. The APl is defined in STRSedycle. The method is
similar to initialize() in LifeCycle interface in SCA or OMG/SWRADIO. The
purpose is to set or reset the application to a known initial state. If no fault is
detected, this method changes the state to STRS_APP_STOPPED state.
None
status (STRS_Result)
Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED st:
Application is in the STRS_APP_STOPPED state.
STRS_Initialize
STRS_Result APP_Initialize() {
if (mySta te == STRS_APP_RUNNING) {
STRS_Buffer_Size nb = strlen(
"Can't Init when STRS_APP_RUNNING.");
STRS_Log(fromWF,STRS_WARNING_QUEUE,
"Can't Init when STRS_APP_RUNNING.", nb);
return STRS_WARNING,;
}else {
é
myState = STRS_APP_STOPPED,;

}
return STRS_OK

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

720f 154

NASA-STD-4009

Table 83 APP_Instance()

APP_Instance()

Description Store the two parameters passed in the calling sequence, handle ID identifi
myQ, and handle name in handleName, respectively, so that they are availz
the other methods in the applicatibm C++, APP_Instance is a static method
used to call the class constructor for C++. If no fault is detected, this methoc
returns an instance pointer and changes the state to
STRS_APP_INSTANTIATED state.

Parameters 1 id-(in STRS_HandlelD) handle ID of hiSTRS application.
T namei (in char*) handle name of this STRS application.

Return Pointer to instance of class, in C++. Naull, in C.

Precondition Any.

Postcondition The application is in the STRS_APP_INSTANTIATED state.

See Also N/A.

Example for C++ | ThisSTRSApplication
*ThisSTRSApplication::APP_Instance(
STRS_HandlelD handlelD, char *name) {
return new ThisSTRSApplication(handlelD,name);

}
Example for C char handleName[nMax];
ThisSTRSApplication *APP_Instance(
STRS_HandlelD handlelD, char *name) {

myQ = handlelD;
strncpy(handleName, name, hMax) ;
myState = STRS_APP_INSTANTIATED;
return name;

}

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

730f 154

APP_Query()
Description

Parameters
Return
Precondition

Postcondition

See Also
Example

NASA-STD-4009

Table 99 APP_Query()

Obtain values for one or more properties in the application. The caller mana
the propListpreallocating the structure. The proplisaynot be NULL. If the
caller fills in the appropriate list of names and sets nProps to the number of |
in the list (nProps > 0), only those values will be returned whose names are
specified in the propListf the caller specifies no names in propList (nProps =
both names and values are filled in up to the maximum number allotted (mP
The APl is defined in STRS_PropertySet. The method is similar to query() in
PropertySet interface in SCA or OMGIRADIO.

1 propList- (inout STRS_Properties *)list of name and value pairs
status (STRS_Result)
The propLists tohave space allotted for the maximum number of properties
whose values are to be returned.
propList is populated with values if names are already in the list (if nProps >
or else populated with all available names and values up to the maximum
(mProps).
STRS_Query
STRS_Result APP_Query(Properties *propList) {
intip;
if (propList == NULL) {
STRS_ Buffer_Size nb = strlen(
"Cano6t return attributes. ")
STRS_Log(fromWF,STRS_ERROR_QUEUE,
"Can't return attributes."”, nb);
return STRS_ERROR,;
}
for (ip=0; ip<propList - >nProps, ip++) {
if (strcemp("A",propList - >vProps[ip].n ame)==0)
{
/' * Variable fAad is declared
* character string, and typically
* contains a value set by APP_Configure. */
if (@ == NULL || strlen(a) == 0) {
propList - >vPropsJip].value = NULL;
} else {
propList - >vPropsJip].value = a;
}

}

}
return STRS_OK;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

740f 154

APP_Read()
Description

Parameters

Return
Precondition
Postcondition

See Also
Example

NASA-STD-4009

Table 10 APP_Read()

Method used to obtain data from the application. This is optional. The API i<

defined in STRS_Source. The caller manages the buffer area, preallocating

buffer before calling RP_Read and processing the returned data without an

effects on the data source application.

1 buffer- (out STRS_Message) a pointer to an area in which the applicati
stores the requested data

T nb-(in STRS_Buffer_Size) number of bytes requéste

Error status (negative) or actual number of bytes-fremative) obtained

(STRS_Result)

The application is in the STRS_APP_RUNNING state. Storage for the buffe

with space for nb bytes is allocated before calling APP_Read. If osed f

C-stylecharactestring the size should include space for a fik@l '

The data from the application is stored in the buffer area.

STRS_Read
STRS_Result APP_Read(STRS_Message buffer,
STRS_Buffer_Size nb) {
if (nb <=4)return STRS_ERROR;
strcpy (buffer,"ABCD");
return strlen(buffer);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

750f 154

NASA-STD-4009

Table 110 APP_ReleaseObiject()

APP_ReleaseObject()

Description

Parameters
Return
Precondition

Postcondition
See Also
Example

Free any resources that the application has acquired. An example would be
close any open files or deds. Nothing is done if the application state is
STRS_APP_RUNNING. The API is defined in STRS_LifeCycle. The methoc
similar to releaseObject() in LifeCycle interface in SCA or OMG/SWRADIO.
The purpose of APP_ReleaseObiject is to prepare the applicatienfoval.
None
status (STRS_Result)
Application is in the STRS_APP_INSTANTIATED or STRS_APP_STOPPEL
state.
All resources acquired by the application are released.
STRS_ReleaseObject
STRS_Result APP_ReleaseObject() {

if (myState == STRS_APP_RUNNING) {

STRS Buffer_Size nb = strlen(
"Can't free resources when RUNNING.");
STRS_Log(fromWF,STRS_WARNING_QUEUE,
"Can't free resources when RUNNING.", nb);
return STRS_WARNING;
}else {
é

}
return STRS_OK;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

76 0f 154

APP_RunTest()
Description

Parameters

Return
Precondition

Postcondition

See Also
Example

NASA-STD-4009

Table 12 APP_RunTest()

Test specific functionality within the application. The tests provide aid in isolz
faults within the application. Application may be in any state, but certain test:
may be resticted to specific states. Property values may be specified or retrie
The propList may be NULL if it is not used. The caller manages the propList
preallocating the structure. The caller fills in the appropriate list of names an
input values and $&nProps to the number of names in the list (nProps > 0). 1
application fills in any output values for those Properties whose names are
specified in the propList. The API is defined in STRS_TestableObject. The
method is similar to runTest() in Testablgext interface in SCA and
OMG/SWRADIO.

1

T

testID- (in STRS_TestID) number of the test to be perforrdedalue of
STRS_TEST_STATUS alwaysto be implemented to retuto the current
application state as shown in figurd Other values afedID are mission
dependent.

propList- (inout STRS_Properties*) list of the name and value pairs usec
configure the test and/or return results.

status or state (STRS_Result)

The propListis tohave space allotted for the maximum rinegmof properties
whose values are to be used or returned.

The test is performed. The state is unchangeess specifically required by
mission.

STRS_ RunTest

STRS_Result APP_RunTest(STRS testlID,

STRS_Properties *propLis t) {
if (testID == STRS_TEST_STATUS)
return myState;
if (testID == STRS_TEST_USER_BASE) {
é
}else {
STRS Buffer_Size nb = strlen(
"Invalid APP_RunTest argument test ID.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"Invalid APP_RunTest argument test ID.", nb);

}
return STRS_ERROR,;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

770of 154

APP_Start()
Description

Parameters
Return
Precondition
Postcondition
See Also
Example

NASA-STD-4009

Table 133 APP_Start()

Begin normal application processing. Nothing is done if the application is no
STRS_APP_STOPPED state. The APl is defined in
STRS_ControllableComponent. The mathse similar to start() in the Resource
interface in the SCA or ControllableComponent interface in the
OMG/SWRADIO. If no fault is detected, this method changes the state to th
STRS_APP_RUNNING state.
None
status (STRS_Result)
Application is in the STRS_APP_STOPPED state.
Application is in the STRS_APP_RUNNING state.
STRS_Start
STRS_Result APP_Start() {
if (myState == STRS_APP_STOPPED) {
e
myState = STRS_APP_RUNNING;
e
} else {
return ST RS_ERROR;

}
return STRS_OK;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

780f 154

APP_Stop()
Description

Parameters
Return
Precondition
Postcondition
See Also
Example

NASA-STD-4009

Table 1459 APP_Stop()

End normal application processing. Nothing is done unless the application i<
STRS_APP_RUNNING state. The APl is defined in
STRS_ControllableComponent. The method is similatap() in the Resource
interface in the SCA or ControllableComponent interface in the
OMG/SWRADIO. If no fault is detected, this method changes the state to th
STRS_APP_STOPPED state.
None
status (STRS_Result)
Application is in the STRS_APP_RUNNING state.
Application is in the STRS_APP_STOPPED state.
STRS_Stop
STRS_Result APP_Stop() {

if (myState == STRS_APP_RUNNING) {

myState = STRS_APP_STOPPED:;

} else {
return STRS_ERR OR;
}

return STRS_OK;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

790f 154

NASA-STD-4009

Table 155 APP_Write()

APP_Write()

Description Method used to send data to the application. This is optional. The API is def
in STRS_Sink. The caller manages the buffer area, preallocating and filling
buffer before callhg APP_Write.

Parameters 1 buffer- (in STRS_Message) pointer to the data for the application to pre
1 nb-(in STRS_Buffer_Size) number of bytes in buffer

Return Error status (negative) or number of bytes (negative) written (STRS_Result

Precondition Application is in the STRS_APP_RUNNING state. Storage for the buffer wit
space for nb bytes is allocated before calling APP_Write. If usedGestge
charactestring the size should include space for a fik@l '

Postcondition The data has beeaptured by the application for its processing.

See Also STRS_Write

Example STRS_Result APP_Write(STRS_Message buffer,

STRS_Buffer_Size nb) {
/* Data in buffer is character data. */

if (strlen(buffer) !=nb -1)
return STRS_ERROR;
int nco = fprintf (st douwt, baud%s er) ;

return (STRS_Result) nco;
}

(STRS29) Each STRS application shall contain a callable APP_Configure method as described
in table 5 APP_Configure().

(STRS30) Each STRS application shall contain a callable APP_Grastdiiethod as
described inable § APP_GroundTest().

(STRS31) Each STRS application shall contain a callable APP_Initialize method as described in
table 7, APP_lInitialize().

(STRS32) Each STRS application shall contain a callable APP_Instance nastliescribed in
table 8 APP_Instance()

(STRS33) Each STRS application shall contain a callable APP_Query method as described in
table 9 APP_Query()

(STRS34) If the STRS application provides data to the infrastructure, then the STRS application
shal contain a callable APP_Read method as describtbla 10 APP_Read()

(STRS35) Each STRS application shall contain a callable APP_ReleaseObject method as
described inable 11 APP_ReleaseObject()

(STRS36) Each STRS application shall contain batde APP_RunTest method as described in
table 12 APP_RunTest()

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

80of 154

NASA-STD-4009

(STRS37) Each STRS application shall contain a callable APP_Start method as described i
table 13 APP_Start()

(STRS38) Each STRS application shall contain a callable APP_Stop metlded@ghed in
table 14 APP_Stop()

(STRS39) If the STRS application receives data from the infrastructure, then the STRS
application shall contain a callable APP_Write method as descrittadlén15 APP_Write()

7.3.2 STRS Infrastructure-Provided Application Control API

The STRS infrastructure provilthe STRS Infrastructugrovided Application Control API to
support application operation using the STRS Applicapimvided Application Control API in
section7.3.1 These STRS Infrastructupeovided Application Control APl methods (section
732beginning with ASTRS_0 c o-proviged ppplicationt o t he
Control API (sectiory.3.) begi nni ng wareuded tGiakded? thase STRS d
Applicationprovided Application Control ARmethods. The STRS infrastructure implesent

these STRS Infrastructupgovided Application Control APl methods for use by any STRS

application, or any part of the infrastructure that is desired to be implemented in a portable way.

A property structureontains a list of the name and value pairs used to set or get execution
parametergsection 7.3.10)

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

81lof 154

ST

STRS_Configure()
Description

Parameters

Return
Precondition
Postcondition

See Also
Example

NASA-STD-4009

Table 160 STRS_Configure()

Set values for one or more properties in the target component (application,
device). It is the rgponsibility of the target component to determine which
properties can be changed in which states. The caller manages the propLis
preallocating and filling in the names and values before calling
STRS_Configure.

1 fromWEF- (in STRS_HandleID) hadle ID of current component making tr
request.

1 toWF- (in STRS_HandlelD) handle ID of target component that should
respond to the request.

9 propList- (in STRS_Properties *) list of name and value pairs.

status (STRS_Result)

Storagefor the propList with space for sufficient name and value pairs;
sufficient space for each name and value is allocated before calling
STRS_Configure.
The appropriate named values are configured. The state is unchanged unl
specifically rgjuired by the mission.
APP_Configure
[* Set A=5, B=27. */
struct {

STRS_NumberOfProperties nProps;

STRS_NumberOfProperties mProps;

STRS_Property vProps[MAX_PROPS];
} proplList;
propList.nProps = 2;
propList.mProps = MAX_PROPS;
propL ist.vProps[0].name ="A";
propList.vProps[0].value = "5";
propList.vProps[1].name = "B";
propList.vProps[1].value = "27";
STRS Result rtn =

STRS_Configure(fromWF,toWF,

(STRS_Properties *) &propList);

if (! STRS_IsOK(rtn)) {

STRS_Buffer_Size nb=st rlen(

"STRS_Configure fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"STRS_Configure fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

820f 154

NASA-STD-4009

Table 170 STRS_GroundTest()

STRS_GroundTest()

Description

Parameters

Return
Precondition

Postcondition

See Also
Example

Perform unit and system testihgisually done before deployment. The testing
may include chbration. The tests aid in isolating faults within the target
component. This method provides the exhaustive testing that is required be
entrusting life and property to a softwatefined radio. A responding
application may be in any state, but cert&sts may be restricted to specific
states. Property values may be specified or retrieved. The propList may be
NULL if it is not used. The caller manages the propList, preallocating the
structure. The caller fills in the appropriate list of names andrgnuyf values
and sets nProps to the number of names in the list (nProps > 0). The targe!
component fills in any output values for those Properties whose names are
specified in the propList. This methaehy beinvalid upon deployment.
1 fromWF- (in STRS_HandlelD) handle ID of current component making
request.
I toWF- (in STRS_HandlelD) handle ID of target component that should
respond to the request.
9 testID- (in STRS_TestID) number of the test to be performed. Values al
mission dependent.
9 propList- (inout STRS_Properties *) list of the name and value pairs ust
configure the test and/or return results.
status or state (STRS_Result)
The propLists tohave space allotted for the maximum number of properties
whose vales are to be used or returned.
The test is performed. Thetateis unchangedinless specifically required by
mission
APP_GroundTest
STRS Result rtn =
STRS_GroundTest(fromWF,toWF,testID,NULL);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"GroundTest fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"GroundTest fails . ", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

830f 154

STRS_Initialize()
Description

Parameters

Return
Precondition

Postcondition
See Also
Example

NASA-STD-4009

Table 18 STRS_Initialize()

Initialize the target component (application, device). The purposeés & s
reset the component to a known initial state.
1 fromWEF- (in STRS_HandlelD) handle ID of current component making
request.
I toWF- (in STRS_HandlelD) handle ID of target component that should
respond to the request.
status (STRSResult)
Application is in STRS_APP_INSTANTIATED or STRS_APP_STOPPED
state
Application is in STRS_APP_STOPPED state
APP_Initialize
STRS_Result rtn = STRS_ Initialize(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"STRS_Initialize fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"STRS_Initialize fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

84 of 154

STRS_Query()
Description

Parameters

Return
Precondition

Postcondition

See Also
Example

NASA-STD-4009

Table 19 STRS_Query()

Obtain values for one or more properties in the target component (ajopljcati
device). The caller manages the propList, preallocating the structure. The
propListmaynot be NULL. If the caller fills in the appropriate list of names &
sets nProps to the number of names in the list (nProps > 0), only those val
will be returnel whose names are specified in the propList. If the caller spec
no names in propList (nProps = 0), both names and values are filled in up t
maximum number allotted (mProps).

1 fromWF- (in STRS_HandlelD) handle ID of current componmaking the
request.
I toWF-(in STRS_HandlelD) handle ID of target component that should
respond to the request.
9 propList- (inout STRS_Properties *)list of name and value pairs
status (STRS_Result)
The propLists tohave space aitted for the maximum number of properties
encountered.
propList is populated with values if names are already in the list; otherwise,
populated with all available names and values.
APP_Query
struct {
STRS_Number@Properties nProps;
STRS_NumberOfProperties mProps;
STRS_Property vProps[MAX_PROPS];
} proplList;
propList.nProps = 2;
propList . mProps = MAX_PROPS;
propList . vProps[0].name ="A";
propList . vProps[0].value = NULL;
propList.vProps[1].name = "B";
propList.v Props[1].value = NULL;
STRS Result rtn =
STRS_Query(fromWF,toWF,
(STRS_Properties *) &propList);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"STRS_Query fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"STRS_Query fails.", nb);
}
for (i p=0; ip<propList . NProps; ip++) {
cout << propList.vprops[ip].name << "="
<< propList.vProps[ip].value
<< std::endl;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

850f 154

NASA-STD-4009

Table 208 STRS_ReleaseObject()

STRS_ReleaseObject()

Description

Parameters

Return
Precondition
Postcondition
See Also
Example

Free any resources that the target component (applicationejlbaE acquired.
An example would be to allow the target component to close any open files
devices. Nothing is done if the application is started. The purpose of
STRS_ReleaseObject is to prepare the target component for removal.
1 fromWF- (in STRS_HandlelD) handle ID of current component making
request.
1 toWF-(in STRS_HandleID) handle ID of target component that should
respond to the request.
status (STRS_Result)
Application is in STRS_APP_INSTANTIATED or STRS_APP_GHPED state
All resources acquired by the application are released.
APP_ReleaseObject
STRS Result rtn =
STRS_ReleaseObject(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
STRS Buffer_Size nb = strlen(
"STRS_ReleaseObject fail s.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"STRS_ReleaseObiject fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

86 of 154

STRS_RunTest()
Description

Parameters

Return
Precondition

Postcondition

See Also
Example

NASA-STD-4009

Table 210 STRS_RunTest()

Test specific functionality within the target component (application, device).

tests provide aid in isolating faukgthin the target component. A responding

application may be in any state, but certain tests may be restricted to speci
states. Property values may be specified or retrieved. The propList may be

NULL if it is not used. The caller manages the propListafiocating the

structure. The caller fills in the appropriate list of names and any input valu

and sets nProps to the number of names in the list (nProps > 0). The targe
component fills in any output values for those Properties whose names are
specified in the propList.

1 fromWF- (in STRS_HandlelD) handle ID of current component making
request.

1 toWF- (in STRS_HandlelD) handle ID of target component that should
respond to the request.

9 testiD- (in STRS_TestID) number of the test to lmfprmed.A value of
STRS_TEST_STATUS alwaysto be implemented to return ticairrent
targetcomponent statas shown in figurd5. Other value®f testiDare
missiondependent.

1 propList- (inout STRS_Properties*) list of the name and value pairs use
configure the test and/or return results.

status or state (STRS_Result)

The propLists tohave space allotted for the maximum number of properties

whose values are to be used or returned.

The test is performed hestateis unchangednless specifically required by

mission

APP_RunTest

STRS_Result state =
STRS_RunTest(fromWF,toWF,

STRS_TEST _STATUS,NULL);

if (! STRS_IsOK(state)) {

STRS_Buffer_Size nb = strlen(
"STRS_RunTest fails.");

STRS_log(fromWF, STRS_ERROR_QUEUE,
"STRS _RunTest fai | s. 0, nb) ;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

870f 154

STRS_Start()
Description

Parameters

Return
Precondition
Postcondition
See Also
Example

STRS_Stop()
Description

Parameters

Return
Precondition
Postcondition
See Also
Example

NASA-STD-4009

Table 22 STRS_Start()

Begin target component (application, device) processing. Nothing is done
application (or device) is already started.
1 fromWF- (in STRS_HandlelD) handle ID of current component makini
the request.
1 toWF- (in STRS_HandlelD) handle ID of target component that shoult
respond to the request.
status (STRS_Result)
Application is in the STRS_APP_STOPPED state.
Application is in the STRS_APP_RUNNING state.
APP_Start
STRS_Result rtn = STRS_ Start(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"STRS_Start fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"STRS_ Start fails.", nb);

Table 23 STRS_Stop()

End target component (application, device) processing. Nothing is done u
the application (or device) is started.
1 fromWF-in STRS_HandlelD) handle ID of current componesaking
the request.
1 toWF-in STRS_ HandlelD) handle ID of target component that should
respond to the request.
status (STRS_Result)
Application is in the STRS_APP_RUNNING state.
Application is in the STRS_APP_STOPPEfte.
APP_Stop
STRS_Result rtn = STRS_ Stop(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"STRS_Stop fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"STRS_Stop fails.”, nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

88of 154

NASA-STD-4009

(STRS40) The STRS infrastruate shall contain a callable STRS_Configure method as
describedn table 16 STRS_Configure().

(STRS41) The STRS infrastructure shall contain a callable STRS_GroundTest method as
described inable 17 STRS_GroundTest()

(STRS42) The STRS infrastruate shall contain a callable STRS _Initialize method as described
in table 18 STRS_Initialize()

(STRS43) The STRS infrastructure shall contain a callable STRS_Query method as described in
table 19 STRS_Query()

(STRS44) The STRS infrastructure shatintain a callable STRS_ReleaseObject method as
described inable 20 STRS_ReleaseObject()

(STRS45) The STRS infrastructure shall contain a callable STRS_RunTest method as described
in table 21 STRS_RunTest()

(STRS46) The STRS infrastructure shabntain a callable STRS_Start method as described in
table 22 STRS_ Start()

(STRS47) The STRS infrastructure shall contain a callable STRS_Stop method as described in
table 23 STRS Stop().

7.3.3 STRS Infrastructure Application Setup API

The STRShirastructure Application Setup methods are general methods or are used to control
one application from another.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

890of 154

STRS_AbortApp()

Description
Parameters

Return
Precondition

Postcondition

See Also
Example

NASA-STD-4009

Table 240 STRS_AbortApp()

Abort an application or service.

1 fromWF- (in STRS_HandlelD) handle ID ofiorent component making
the request.
1 toWF-(in STRS_HandlelD) handle ID of target component that shoul
respond to the request
Status (STRS_Result)
Application is in the STRS_APP_INSTANTIATED, STRS_APP_STOPPE!
or STRS_APP_RUNNING ate.
The target component is aborted, and application is stopped, resources re
and unloaded, if allowed by OE.
N/A.
STRS_Result rtn = STRS_AbortApp(fromWF,toWF);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strl en(
"AbortApp fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"AbortApp fails.", nb);

Table 255 STRS_GetErrorQueue()

STRS_GetErrorQueue()

Description
Parameters
Return

Precondition
Postcondition
See Also
Example

Transform an error status into an error queue.
9 result- (in STRS_Result) return valué previous call.
Handle ID (STRS_HandlelD) corresponding to invalid STRS_Result; that is,
return STRS_ERROR_QUEUE for STRS_ERROR, STRS_WARNING_QUE
for STRS_WARNING, and STRS_ FATAL QUEUE for STRS FATAL.
Any.
The correponding error queue handle ID is returned.
STRS_IsOK
char toWF[MAX_PATH_LENGTH];
strepy(toWF,"/path/STRS_WHFxxx.cfg");
STRS_HandlelD wflD =
STRS_InstantiateApp(fromWF,toWF);
if (WflD <0) {
STRS_Buffer_Size nb = strlen(
“Instantia teApp fails.");
STRS_Log(fromWF,
STRS_GetErrorQueue((STRS_Result)wflD),
"InstantiateApp fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

90of 154

NASA-STD-4009

Table 266 STRS_HandleRequest()

STRS_HandleRequest()

Description

Parameters

Return
Precondition
Postcondition
See Also
Example

The table of object names is searched for the given name, and the index is
returred as the handle ID. A handle ID is an identifier that is used to control
access to applications and resources such as other applications, devices, fil
message queues. The handle ID of the current component (fromWF) is usec
any error message uskethe handle ID of the current component is what is be
determined.

1 fromWF- (in STRS_HandlelD) handle ID of current component making t
request unless it is a request for the handle ID of the current component
1 toWF- (in char *) name oflesired resource (application, device, file, queu
Handle ID of the entity or error statsSTRS_HandlelD)
Any.
No change.
N/A.
STRS_HandleID toWF = STRS_HandleRequest(fromWF,
otherWF);
iftlo WF<O0){
STRS_Buffer_Size nb = strlen(
"Did not find handle.");
STRS_Log(fromWF,STRS_ERROR_QUEUE,
"Did not find handle.", nb);
lelse {
cout << "Found handle for " << otherWF << ": "
<< toWF << std::endl;

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

91of 154

NASA-STD-4009

Table 270 STRS_InstantiateApp()

STRS_InstantiateApp()

Description

Parameters

Return
Precondition
Postcondition

See Also
Example

Instantiate an application, service, or device and perform any operations img
by the configuration file. The configuration file specifies such items as
initialization values and state. The infrastructure is responsibtafiimg the
appropriate methods (e.g., STRS_Configure and/or APP_Configure) to conf
the initial or default values. Other STRS methods may be called to perform
additional functions, such as loading images or performing change of state ¢
described irthe application state diagrafigure 15.

1 fromWF- (in STRS_HandlelD) handle ID of current component making t/
request.

1 toWF- (in char *) storage area name or fully qualified file name of the
deployed configuration file of the application @®vice) that should be
instantiated. The handleName corresponding to the application, service,
device specified in the configuration fietobe unigue. The convention is t
prefix the application name with a unique source and add a number at tt
if required, to make the handleName unique. See sezfimmmore
information aboutonfigurationfile(s).

Handle ID (STRS_HandlelD) of the application instantiated or the error statt

The files for the STRS applicatiémtobe acessible.

Application, service, or device is in the STRS_APP_INSTANTIATED state

unless otherwise specified by the configuration file.

N/A.

char toWF[MAX_PATH_LENGTH];

strepy(toWF,"/path/STRS_WFxxx.cfg");

STRS_HandleID wfiID =
STRS_InstantiateApp(fromWF,toWF);

if (WflD < 0) {

STRS Buffer_Size nb = strlen(
"InstantiateApp fails.");

STRS_Log(fromWF, STRS_ERROR_QUEUE,
"Instantiate App fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

92 of 154

STRS_IsOK()
Description
Parameters
Return

Precondition
Postcondition
See Also
Example

STRS_Log()
Description

Parameers

Return
Precondition
Postondition
See Also
Example

NASA-STD-4009

Table 28 STRS_IsOK()

Return true, if retur value of previous call is not an error status.
T result- (in STRS_Result) return value of previous call.
true, if STRS_Result is not STRS_ WARNING, STRS_ERROR, or
STRS_FATAL: that is, nomegative (bool)
Previous call retrns a status result.
No change.
STRS_GetErrorQueue
char toWF[MAX_PATH_LENGTH];
strepy(toWF,"/path/STRS_WFxxx.cfg");
STRS_ HandlelD wflD =
STRS_InstantiateApp(fromWF,toWF);
if (! STRS_ISOK((STRS_Result)wflD)) {
STRS_Ruffer_Size nb = strlen(
"InstantiateApp fails.");
STRS_Log(fromWF, STRS_GetErrorQueue(wfiD),
"InstantiateApp fails.", nb);

Table 29 STRS_Log()

Send log message for distribution as appropriate. The time stamp and an
indication of the from and target handles are added automatically. STRS_Lox
be used to inform the infrastructure that the STRS component is in the FAUL
state when a target handle ID of STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE is used.

1 fromWF- (in STRS_HandlelD) handle ID of current component making tt
request.

1 logTarget- (in STRS_HandlelD) handle ID of target (e.qg.,
STRS_TELEMETRY_QUEUE, STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, or STRS_FATAL_QUEUE). The last three
specialpurpose hAndle IDs may be used to log errors.

1 msg-(in STRS_Message) a pointer to the data to process

1 nb-(in STRS_Buffer_Size) number of bytes in buffer

status (STRS_Result)

The targefjueuecomponent is in the STRS_APP_RUNNING state.

Log message is distributed.

See STRS_RunTest or APP_RunTest for further examples.

STRS_Buffer_Size nb = strlen("file does not exist.");

STRS_Log(fromWF,STRS_ERROR_QUEUE,

"file does not exist.", nb);
/[This could produce a | ine something like:
1l 19700101000000;WF1,ERROR file does not exist.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

93 of 154

NASA-STD-4009

(STRS48) The STRS infrastructure shall contain a callable STRS_AbortApp method as
described inable 24 STRS_AbortApp().

(STRS49) The STRS infrastructure shall contain a call&8II®S _GetErrorQueue method as
described inable 25 STRS_GetErrorQueue()

(STRS50) The STRS infrastructure shall contain a callable STRS_HandleRequest method as
described inable 26 STRS_HandleRequest()

(STRS51) The STRS infrastructure shall canta callable STRS_ InstantiateApp method as
described intable 27 STRS_ InstantiateApp()

(STRS52) The STRS infrastructure shall contain a callable STRS IsOK method as described in
table 28 STRS_IsOK()

(STRS53) The STRS infrastructure shall containallable STRS_Log method as described in
table 29 STRS_Log()

(STRS54) When an STRS application has a nonfatal error, the STRS application shall use the
callable STRS_Log method as describethlsie 29 STRS_Log), with a target handle ID of
constat STRS_ERROR_QUEUE.

(STRS55) When an STRS application has a fatal error, the STRS application shall use the
callable STRS_Log method as describethlsie 29 STRS_Log), with a target handle ID of
constant STRS_FATAL_QUEUE.

(STRS56) When an STRS apeétion has a warning condition, the STRS application shall use
callable the STRS_Log method as describedlie 29 STRS_Log), with a target handle ID of
constant STRS_WARNING_QUEUE.

(STRS57) When an STRS application needs to send telemetry, the &JpR&ation shall use

the callable STRS_Log method as describedlie 29 STRS_Log), with a target handle ID of
constant STRS_ TELEMETRY_QUEUE.

7.3.4 STRS Infrastructure Data Sink

The STRS Infrastructure Data Sink method, STRS_Write, is used tbapaish any

implemented data sink. A data sink may be an STRS application or STRS Device implementing
APP_Write, a queue, or a file opened for writing.

(STRS58) The STRS infrastructure shall contain a callable STRS_Write method as described in
table 30 STRS_Write()

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

94 of 154

STRS_Write()
Description

Parameters

Return

Precondition

Postcondition
See Also
Example

NASA-STD-4009

Table 305 STRS_Write()

Method used to send data to a target component (application, device, file
gueue) acting as a sink. The caller manages the buffer area, preallocatin
filling the buffer before callingTRS_Write.
1 fromWF- (in STRS_HandlelD) handle ID of current component makir
the request.
1 tolD - (in STRS_HandlelD) handle ID of target component that shoulc
respond to the request and that implemented STRS_Sink.
91 buffer- (in STRS_Message) anter to the data to process
1 nb-(in STRS_Buffer_Size) number of bytes in buffer
Error status (negative) or number of bytes ¢negative) written
(STRS_Result)
The target component is in the STRS_APP_RUNNING state. Storage fol
buffer is allocated before calling STRS_Write having space for at least nl
bytes. If used for &-stylecharactestring, the size should include space foi
final \0'.
The data has been captured by the target component for its processing.
APP_Write
char buffer[32];
strcpy(buffer,"ABCDE");
STRS_Buffer_Size nb = strlen(buffer);
STRS_Result rtn =
STRS_Write(fromWF,tolD,buffer,nb);

7.3.5 STRS Infrastructure Data Source

The STRS Infrastructure Data Source method, STRif, Beused to pull data from any
implemented data source or supplier. A data source may be an STRS application or STRS Device
implementing APP_Read, a SIMPLE queue, or a file opened for reading.

(STRS59) The STRS infrastructure shall contain a call8II®S Read method as described in
table 31 STRS_Read().

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

950f 154

NASA-STD-4009

Table 310 STRS_Read()
STRS_Read()

Description Method used to obtain data from a target component (application, device
or SIMPLE queue) acting as a source or supplier. The caller manages th
buffer area, preallocating the buffer before calling STRS_Read and proc¢
the returned data without any effects on the data source application.

Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component makir

the request.

9 pulliD - (in STRS HandlelD) handle ID of target component that shou
respond to the request and that implemented STRS_Source.

91 Dbuffer- (out STRS_Message) a pointer to an area in which to store tr
data requested

1 nb-(in STRS_Buffer_Size) number of bytes requested

Return Error status (negative) or actual number of bytes-fremgative) obtained
(STRS_Result)
Precondition The target component is in the STRS_APP_RUNNING state. Storage fol

buffer is allocated before calling STRS_Read, having space for at least r
bytes. f used for aC-stylecharactestring the size should include space for

final \O'.
Postcondition The data from the target component is stored in the buffer area.
See Also APP_Read
Example char buffer[32];

STRS Buffer_Size nb = 32;
STRS Result rth =
STRS_Read(fromWF,pulllD,buffer,nb);

7.3.6 STRS Infrastructure Device Control API

An STRS Device is a proxy for the data and/or control path to the actual hardware. An STRS
Device is a fibridgeodo used to fAdesothatgHeevoan a
can vary independent | y. dhe WethodS ih RESTRR infrastrecture s
Device Control API (as described in the tables below), STRS Infrastrymtovaled Application
Control API, Infrastructure Data Source API &ppropriate), and Infrastructure Data Sink API

(if appropriate) to control the STRS Devicéhe STRS Device may be implemented using any
available platformspecific HAL to communicate with and control the specialized hardware. An
STRS Device may also bged to hide the details of networking from the application. The

purpose of abstracting the hardware interfaces in a standard manner is to make the applications
more portable. An STRS Device is an STRS application that responds to the STRS Infrastructure
provided Application Control API (sectiah3.2)calls, the STRS Infrastructure Data Source API
(section7.3.5)calls (if appropriate), and STRS Infrastructure Data Sink API (seGtida) calls

(if appropriate), as well as the following additional callieTSTRS Device implementation is
suggested ifigure 14.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

96 of 154

bs
ca

NASA-STD-4009

Table 32 STRS_DeviceClose()

STRS_DeviceClose()

Description Close the device.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component makini
the request.
1 toDev- (in STRS_HandlelD) &andle ID of device that should respond to
the request.

Return status (STRS_Result)
Precondition The devicas open.
Postcondition The device is closed.
See Also N/A.

Example STRS_Result rtn =

STRS_DeviceClose(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"DeviceClose fails.");
STRS_Log(fromWF, STRS _ERROR_QUEUE,
"DeviceClose fails.", nb);

}
Table 33 STRS_DeviceFlush()
STRS_DeviceFlush()
Description Send any buffered data immediately to the underlying hardware eenctice
buffers.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component making
request.
1 toDev- (in STRS_HandlelD) handle ID of device that should respond to
request.
Return status (STRS_Result)
Precondition The devicds open.
Postcondition The deviceds buffered data is flu
See Also N/A.
Example STRS_Result rtn =

STRS_DeviceFlush(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
STRS Buffer_Size nb = strlen(
"DeviceFlush fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"Device Flush fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

97 of 154

NASA-STD-4009

Table 349 STRS_DevicelLoad()

STRS_DevicelLoad()
Description Load a binary image to the device.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component making
the request.
1 toDev- (in STRS_HandleID) handle ID of deviteat should respond to
the request.
1 fileName- (in char *) storage area name or fully qualified file name of t
binary image to load onto the hardware device.

Return status (STRS_Result)

Precondition The target device is open.

Postcondition The binaryimage is stored in the target device.
See Also N/A.

Example STRS_Result rtn =

STRS_DeviceLoad(fromWF,toDev,
"/path/WF1.FPGA. bit");
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"DevicelLoad fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"Deviceload fails.", nb);

}
Table 350 STRS_DeviceOpen()
STRS_DeviceOpen()
Description Open the device.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component

making the request.
1 toDev- (in STRS_HandlelD) handle ID of device that shawspond to
the request.

Return status (STRS_Result)
Precondition The devicds notalready open.
Postcondition The device is opened.

See Also N/A.

Example STRS_Result rtn =

STRS_DeviceOpen(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
STRS_ Buffer_Size nb = strlen(
"DeviceOpen fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"DeviceOpen fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

98 of 154

STRS_DeviceReset()

Description

Parameters

Return
Precondition
Postcondition
See Also
Example

STRS_DeviceStart()

Description

Parameters

Return
Precondition
Postcondition
See Also
Example

NASA-STD-4009
Table 360 STRS_DeviceReset()

Reinitialize the device. Reset is normally used after the corresponding dt
has been atted and stopped, and before the device is started again.
1 fromWF- (in STRS_HandlelD) handle ID of current component makit
the request.
1 toDev- (in STRS_HandlelD) handle ID of device that should respond
the request.
status (STRS_Rilt)
The devicds open.
The device is reset to an initial state.
N/A,
STRS_Result rtn =
STRS_DeviceReset(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"DeviceReset fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"DeviceReset fails.", nb);

Table 30 STRS_DeviceStart()

Start the device. This is normally not used since most devices start when-
are loaded.
1 fromWF- (in STRS_HandI®) handle ID of current component making
the request.
9 toDev- (in STRS_HandlelD) handle ID of device that should respond t
the request.
status (STRS_Result)
The device is in the STRS_APP_STOPPED state.
The device isn the STRS_APP_RUNNING state.
N/A.
STRS Result rtn =
STRS_DeviceStart(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"DeviceStart fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"DeviceStart fails.”, nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

99 of 154

NASA-STD-4009

Table 38 STRS_DeviceStop()
STRS_DeviceStop()

Description Stop the device. This is normally not used since most devices stop wher
are unloaded or when there are no data to process.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current coomgnt making

the request.
1 toDev- (in STRS_HandleID) handle ID of device that should respond
the request.

Return status (STRS_Result)

Precondition The device is in the STRS_APP_RUNNING state.
Postcondition The device is in the STRS_APP_STOPPED state.
See Also N/A.

Example STRS_Result rtn =

STRS_DeviceStop(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
STRS Buffer_Size nb = strlen(
"DeviceStop fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"DeviceStop fails.", nb);

Table 3% STRS_DeviceUnload()

STRS_DeviceUnload()
Description Unload the device.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component makir
the request.
1 toDev- (in STRS_HandlelD) handle ID of device that should respond
the request.

Return status (STRS_Result)
Precondition The device is loaded.
Postcondition The device is unloaded.
See Also N/A.

Example STRS_Result rtn =

STRS_DeviceUnload(fromWF,toDev);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"DeviceUnload fails.");
STRS_Log(fromWF, STR S_ERROR_QUEUE,
"DeviceUnload fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1000f 154

NASA-STD-4009

Table 405 STRS_SetISR()

STRS_SetISR()
Description Set the Interrupt Service Routine for the device.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of the current component maki
the request.
i toDev- (in STRS_HandlelD) handle ID of the device that should responc
the request.
1 pfuni (in STRS_ISR_Function) function pointer to a static function with
arguments to be called to service the interrupt

Return status (STRS_Result)
Precondition Any.

Postondition ISR function is activated.
See Also N/A.

Example gnew=myQ;

fp = (STRS_ISR_Function) Test_ISR_Method;
fprintf(stdout,"Pointer to function Test_ISR_ Method:
%p n",fp);
rtn = STRS_SetISR(myQ,gnew,(STRS_ISR_Function) fp);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
ASTRS_ _Setl SR fails for Test _
STRS_Log(myQ, STRS_ERROR_QUEUE,
ASTRS_ _Setl SR fails for Test _
Met hod. 6, nb) ;

}

(STRS60) The STRS applications shall use the methods in the STRS infrastructice Dev
Control API, STRS Infrastructusgrovided Application Control API, Infrastructure Data Source
API (if appropriate), and Infrastructure Data Sink API (if appropriate) to control the STRS
Devices.

(STRS61) The STRS infrastructure shall contain a tdl&c5TRS_DeviceClose method as
described inable 32 STRS_DeviceClose().

(STRS62) The STRS infrastructure shall contain a callable STRS_DeviceFlush method as
described inable 33 STRS_DeviceFlush().

(STRS63) The STRS infrastructure shall contaicallable STRS_DeviceLoad method as
described inable 34 STRS_DevicelLoad().

(STRS64) The STRS infrastructure shall contain a callable STRS_DeviceOpen method as
described inable 35 STRS_DeviceOpen().

(STRS65) The STRS infrastructure shall containallable STRS_DeviceReset method as
described inable 36 STRS_DeviceReset().

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

101of 154

NASA-STD-4009

(STRS66) The STRS infrastructure shall contain a callable STRS_ DeviceStart method as
described inable 37 STRS_DeviceStart().

(STRS67) The STRS infrastructure shatintain a callable STRS_ DeviceStop method as
described inable 38 STRS_DeviceStop().

(STRS68) The STRS infrastructure shall contain a callable STRS_DeviceUnload method as
described inable 39 STRS_DeviceUnload().

(STRS69) The STRS infrastructur@all contain a callable STRS_SetISR method as described
in table 40 STRS_SetISR().

7.3.7 STRS Infrastructure File Control API

The STRS Infrastructure File Control methods, along with STRS_Read and/or STRS_Write,
provide a portable means for the applicas to use storage, the duration of which is mission
dependent. The word Afiled is used to mean a
a file system. The file control methods in POSIX PSE51 are not sufficient for the needs of STRS
because m application strictly conforming to PSE51 can use the open(), fopen(), or freopen()
functions only to open existing files, not to create new files. In addition, the PSE51 profile lacks
functions to remove files or to provide information regarding avadatbbrage. For more

information about POSIX, see sectiod. The STRS Infrastructure File Control methods use a

handle ID to access storage.

Table 410 STRS_FileClose()
STRS_FileClose()

Description Close the file. STRS_FileClose is used to close aldéas been opened by
STRS_FileOpen.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component making

the request.
i toFile- (in STRS_HandlelD) handle ID of file to be closed.

Return status (STRS_Result)

Precondition The file is open.

Postondition The file is closed and the handle ID is released.

See Also STRS_FileOpen

Example STRS_Result rtn = STRS_FileClose(fromWF,toFile);

if (! STRS_IsOK(rtn)) {
STRS Buffer_Size nb = strlen(
"FileClose fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"FileClose fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1020f 154

NASA-STD-4009

Table 42 STRS_FiléGetFreeSpacé)
STRS_FileGetFreeSpace()

Description Get total size of free space available for file storage.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component making
request.
1 fileSystem- (in char *) used when more than one file system exists.
Return Total size in bytes (STRS_File_Size)
Precondition Any.
Postcondition No change.
See Also N/A.
Example STRS_File_Size size =
STRS_FileGetFreeSpace(fromWF,NULL);
if (size < 0) {

STRS Buffer_Size nb = strlen(
"FileGetFreeSpace fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"FileGetFreeSpace fails.", nb);

Table 43 STRS_FileGetSize()

STRS_FileGetSize()

Description Get the size of the specified file.
Parameters T fromWF- (in STRS_HandlelD) handle ID of current component making
the request.
1 fileName- (in char *) storage area name or fully qualified file name of t
file for which the size is obtained.

Return File size in bytes (STRS_File_Size)
Precondition Any.
Postcondtion No change.
See Also N/A.
Example STRS File Size size =
STRS_FileGetSize(fromWF,"/path/WF1.FPGA.bit");
if (size <0){

STRS Buffer_Size nb = strlen(
"FileGetSize fails.");

STRS_Log(fromWF, STRS_ERROR_QUEUE,
"FileGetSize fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1030f 154

NASA-STD-4009

Table 449 STRS_FileGetStreamPointer()

STRS_FileGetStreamPointer()

Description

Parameters

Return
Precondition
Postcondition
See Also
Example

Get the file stream pointer for the file associated with the STRS handle ID
is normally not used because either the common functions are built into th
STRS architecture dhe entire file manipulation is local to one application ¢
device. This method may be required for certain file operations not built in
the STRS architecture and distributed over more than one application or ¢
or the STRS infrastructure. For exdmpthe file stream pointer may be
required when multiple applications write to the same file using a queue o
need features not found in STRS_Write. Having a file system is optional; i
file system is present, NULL will be returned. A NULL will alsore¢urned if
another error condition is detected.

1 fromWF- (in STRS_HandlelD) handle ID of current component making
the request.
T toFile- (in STRS_HandlelD) file handle ID.
File stream pointer (FILE *) or NULL for error condition.
File is open.
No change.
STRS_FileOpen
FILE *fsp =
STRS_FileGetStreamPointer(fromWF,toFile);
if (fsp == NULL) {
STRS_Buffer_Size nb = strlen(
"FileGetStreamPointer fails.");
STRS_Log(fromWF, STRS_ERROR_QURIJE,
"FileGetStreamPointer fails.", nb);
}else {
rewind(fsp);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1040f 154

STRS_FileOpen()
Description

Parameters

Return
Precondition
Postcondition
See Also
Example

NASA-STD-4009

Table 455 STRS_FileOpen()

Open the file. This method is used to obtain an STRS handle ID when the
manipulation is either built into the STRS architecturéistributed over
more than one application or device or the STRS infrastructure
1 fromWF- (in STRS_HandlelD) handle ID of current component making
the request.
1 filename- (in char *) file name of the file to be opened.
9 file access (in STRS Access) indicates if file is to be opened for
reading, writing, both, or appending.
1 file type- (in STRS_Type) indicator whether file is text or binary.
a handle ID used to read or write data from or to the file (STRS_HandleID)
Thefile is not open.
The file is open unless an error occurs.
N/A.
STRS_HandlelD frd =
STRS_FileOpen(fromWF filename,
STRS_ACCESS_READ,
STRS_TYPE_TEXT);

if (frd < 0) {
STRS_Buffer_Size nb = strlen(
"FileOpen fall s.");

STRS_Log(fromWF, STRS_ERROR_QUEUE,
"FileOpen fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1050f 154

STRS_FileRemove()
Description
Parameters

Return
Precondition
Postcondition

See Also
Example

STRS_FileRename()
Description
Parameters

Return
Precondition
Postcondition
See Also
Example

NASA-STD-4009

Table 460 STRS_FileRemove()

Remove the file.
1 fromWF- (in STRS_HandlelD) handle ID of current component makir
the request.
1 oldName- (in char *) name of file to be removed.
status (STRS_Result)
The existing file is not open.
The file is no longer available, and the space where it was stored becom
available.
N/A.
STRS_ Result rtn =
STRS_FileRemove(fromWF,oldName);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"FileRemove fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"FileRemove fails.", nb);

Table 470 STRS_FileRename()

Rename the file.
1 fromWF- (in STRS_HandlelD) handle ID of current component makir
the request.
1 oldName- (in char *) current name of file.
1 newName- (in char *) new name of file after rename.
status (STRS_Result)
The existing file is nobpen. The new file should not exist.
The contents of the old file are now associated with the new file name.
N/A.
STRS Result rtn =
STRS_FileRename(fromWF,oldName,newName);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Sizen b = strlen(
"FileRename fails.");
STRS_Log(fromWF, STRS_ERROR_QUEUE,
"FileRename fails.", nb);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1060f 154

NASA-STD-4009

(STRS70) The STRS infrastructure shall contain a callable STRS_FileClose method as
described inable 41 STRS_FileClose().

(STRS71) The STRS infrasiicture shall contain a callable STRS_FileGetFreeSpace method as
described inable 42 STRS_STRS_FileGetFreeSpace().

(STRS72) The STRS infrastructure shall contain a callable STRS_FileGetSize method as
described inable 43 STRS_FileGetSize().

(STRS73) The STRS infrastructure shall contain a callable STRS_FileGetStreamPointer method
as described itable 44 STRS_FileGetStreamPointer().

(STRS74) The STRS infrastructure shall contain a callable STRS_FileOpen method as
described inable 45 STRS_HeOpen().

(STRS75) The STRS infrastructure shall contain a callable STRS_FileRemove method as
described inable 46 STRS_FileRemove().

(STRS76) The STRS infrastructure shall contain a callable STRS_FileRename method as
described inable 47 STRS_HeRename().

7.3.8 STRS Infrastructure Messaging API

The STRS applications use the STRS Infrastructure Messaging methods to establish queues to
send messages between components using a single queue handle ID. The ability for applications,
services, deeks, or files to communicate with other STRS applications, services, devices, or files
is crucial for the separation of radio functionality among independent asynchronous

components. For example, the receive and transmit telecommunication functionabty can
separated between two applications. Another example is when commands or log messages come
from several independent sources and have to be merged appropriately. Some examples of
independent components that probably need to interact with others cooldrizevigation,

GPS, file upload, file download, and computations (even nonradio). The STRS radio is

essentially a computer, and it has capabilities that make the whole spacecraft system more
robust. The final destination of a message is not necessaolyrkto the producer of the

message.

There are two models for passing messages: STRS _QUEUE_SIMPLE and
STRS_QUEUE_PUBSUB. In an STRS_QUEUE_SIMPLE queue, messages are written to a
gueue by one application and read from the queue by another applicatian. In a
STRS_QUEUE_PUBSUB queue, messages written to the queue by one application are
subsequently written to all subscribers of that queue. Therefore, the STRS_QUEUE_PUBSUB
messaging API should be implemented using a form of the Observer or FRddbistribe dgign
pattern. To read from a SIMPLE queue, STRS_kaskd. To write to a queue, STRS_Wste
used. STRS_Read and STRS_Write, provide a portable means for the applications to use queues.
Specific predefined queues for the handle IDs denoted by STRSRERREBUE,
STRS_FATAL_QUEUE, and STRS_WARNING_QUEUE are required. The STRS_Log method
uses these speciplrpose handle IDs to log errors.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1070of 154

NASA-STD-4009

The queue names are global so that the queues with the same name refer to the same queue
across all applicationsThesame handle name refers to the same application, device, file, queue,
timer, or service across all applicatiorfSor information about errors see section 7.3.11.

Table 48 STRS_QueueCreate()
STRS_QueueCreate()

Description Create a queue (first in, fireu® FIFO). The use of the queue priority
parameter is implementation dependent.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component maki

the request.

1 queueName (in char *) unique name of the queue

T queueType (in STRS Queue_Type)ype of queue created:
STRS_QUEUE_SIMPLE or STRS_QUEUE_PUBSUB.

1 queuePriority (in STRS_Priority) priority of queue:
STRS_PRIORITY_LOW, STRS_PRIORITY_MEDIUM, or
STRS_PRIORITY_HIGH.

Return handle ID of queue or error status (STRS_HandlelD)
Precondition Queaue does not already exist having the given queue name.
Postcondition Queue is created.
See Also N/A.
Example STRS_HandleIlD gX = STRS_QueueCreate(myQ, "QX",

STRS_QUEUE_SIMPLE, STRS_PRIORITY_MEDIUM);

if (X <0){
STRS_Buffer_Size nb = strlen(
"Candbt create queue. ") ;

STRS_Log(fromWF,STRS_ERROR_QUEUE,
"Can't create queue.”, nb).
return STRS _ERROR;

}

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

108of 154

STRS_QueueDelete()

Description

Parameters

Return
Precondtion
Postcondition
See Also
Example

STRS_Register()

Description

Parameters

Return
Precondition
Postcondtion
See Also
Example

NASA-STD-4009

Table 49 STRS_QueueDelete()

Delete a queue. Any association between a publisher and subscriber the
referenceshte queue to be deleted is removed.
1 fromWF- (in STRS_HandlelD) handle ID of current component makii
the request.
1 toQueue (inout STRS_HandlelD) handle ID of queue to delete; eithe
publisher or subscriber
status (STRS_Result)
Queue already exists having the specified queue handle ID.
Queue is deleted.
N/A.
STRS_Result rtn = STRS_QueueDelete(myQ,gX);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"Can't delete queue.");
STRS_log(fromWF,STRS_ERROR_QUEUE,
"Canot del ete queue. ", nb) ;

Table 50 STRS_Register()

Register an association between a publisher and subscriber. Disallow ¢
an association such that the subscriber has another assdogtioto the
publisher because this would cause an infinite loop.
1 fromWF- (in STRS_HandlelD) handle ID of current component mak
the request.
9 useQID- (in STRS_HandlelD) handle ID of queue of type
STRS QUEUE_PUBSUB that will be used in sitlie publisher.
1 actQID- (in STRS_HandlelD) handle ID of queue, file, device, or tal
component that should respond to the request; the subscriber.
status (STRS_Result)
The publisher queue of type STRS_QUEUE_PUBSUB exists.
Association between publisher and subscriber is registered, if allowed.
N/A.
STRS_Result rtn = STRS_Register(myQ,gX,qFC);
if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"Can't register subscriber.");
STRS_Log(fromWF,ST RS_ERROR_QUEUE,
"Canb6t register subscriber.

n

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1090f 154

NASA-STD-4009

Table 510 STRS_Unregister()
STRS_Unregister()

Description Remove an association between a publisher and subscriber.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component mak
therequest.

1 useQID- (in STRS_HandlelD) handle ID of queue of type
STRS_QUEUE_PUBSUB that was used in sink; the publisher.

1 actQID- (in STRS_HandlelD) handle ID of queue, file, device, or tal
component that should respond to the request; usually the iBeiscr

Return status (STRS_Result)

Precondition The publisher queue of type STRS_QUEUE_PUBSUB exists.
Postcondition Association between publisher and subscriber is removed.
See Also N/A.

Example STRS_Result rtn = STRS_Unregister(myQ,gX,qFC);

if ! STRS _IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
"Can't unregister subscriber.");
STRS_Log(fromWF,STRS_ERROR_QUEUE,
"Canb6t wunregister subscriber

}

(STRS77) The STRS applications shall use the STRS Infrastructure MessafiRG
InfrastructureData Source, and STRS Infrastructure Data $ekhods to establish queues to
send messages between components.

(STRS78) The STRS infrastructure shall contain a callable STRS_QueueCreate method as
described inable 48 STRS_QueueCreate().

(STRS79) The STRS infrastructure shall contain a callable STRS_QueueDelete method as
described inable 49 STRS_QueueDelete().

(STRS80) The STRS infrastructure shall contain a callable STRS_Register method as described
in table 50 STRS_Register().

(STRS81) The STRS infrastructure shall contain a callable STRS_Unregister method as
described inable 51 STRS_Unregister().

7.3.9 STRS Infrastructure Time Control API

The STRS Infrastructure Time Control methods are used to access the hardware and software
timers. If timers require synchronization with external clocks, a dedicated service should handle
the communication required between the STRS radio and the external clock source, adjusting the
time or offset for distance and velocity, before using these nsetba@dljust a corresponding

internal timer. These methods also include conversion of time between seconds and
nanoseconds, taken individually, and some implementapenific object containing both.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1100f 154

NASA-STD-4009

Although nanoseconds are the units obtained by STRSa@®bdconds, that does not imply that

the resolution is nanoseconds or that the underlying STRS_TimeWarp object contains its data in
nanoseconds. For example, the underlying STRS_TimeWarp object could count ticks from some
epoch and then STRS_GetSecondsSarRIS _GetNanoseconds compute the seconds and
nanoseconds from the same or a different epoch. These timers are expected to be used for
relatively low accuracy timing such as time stamps, timed events, and time constraints. The
timers are expected to be udedsignal processing in the GPP if the GPP becomes fast enough.

Table 52 STRS_GetNanoseconds()

STRS_GetNanoseconds()

Description
Parameters

Return

Precondition
Postcondition
See Also
Example

STRS_GetSeconds()

Description
Parameters

Return

Precondition
Postcondition
See Also
Example

Get the number of nanoseconds from the STRS_TimeWarp object.
1 twObj- (in STRS_TimeWarp) the STRS_TimeWarp ajirom
which the nanoseconds portion of the time increment is extract:
Integer number of nanoseconds in the STRS_TimeWarp object
representing a time intervaSTRS _int32)
Any.
No change.
STRS_SetTimeWar[§TRS_GetSeconds
STRS_TimeWarp base, timx;
STRS int32 nsec;
STRS Result rtn;
STRS_Clock_Kind kx = 1;
rtn =
STRS_GetTime(fromWF,toDev,*base,kx,*timx);
nsec = STRS_GetNanoseconds(base);

Table 53 STRS_GetSeconds()

Get the number of seconds from the STRS_TimeWarp object.

T twObj- (in STRS_TimeWarp) the STRS_TimeWarp object from whicl
the nanoseconds portion of the time increment is extracted.

integer number of seconds in the STRS_TimeWarp objpotsenting a time

interval. STRS_int32)

Any.

No change.

STRS_SetTimeWarp, STRS_GetNanoseconds

STRS_TimeWarp base,timx;

STRS_int32 isec;

STRS_Result rtn;

STRS Clock Kind kx = 1;

rtn = STRS_GetTime(fromWF,toDe V,*base,kx,*timx);

isec = STRS_GetSeconds(base);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1110f 154

STRS_GetTime()
Description

Parameters

Return
Precondition
Postcondition
See Also
Example

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

NASA-STD-4009

Table 549 STRS_GetTime()

Get the current base time and the corresponding time of a specified type (
The base clock/timer is usually a hardware timer. The variable kirsgdto
obtain a nonbase time at a specified offset from the base time. An offset is
usually specified to ensure that the clock is monotonically increasing after
power reset or synchronized with another clock/timer. To compute the tim
interval betweervto nonbase times of different kinds, the function is called
twice and the interval is modified by the difference between the two base 1
An example of the difference between two nonbase times is shown in the
example below.

1 fromWF- (in STRS HandlelD) handle ID of current component making
the request.

9 toDev- (in STRS_ HandlelD) handle ID of device that should respond t
the request.

1 baseTime (inout STRS_TimeWarp) current time of the base timer.

1 kind- (in STRS_Clock_Kind) type of clock/time

T kindTime- (inout STRS_TimeWarp) current time of the specified timer.

status (STRS_Result)

Any.

No change.

STRS_SetTime
STRS_TimeWarp bl,b2,t1,t2,diff;
STRS int32 isec,nsec;
STRS_Result rtn;

STRS_(Qock Kind k1 =1;
STRS_Clock_Kind k2 = 2;

rtn = STRS_GetTime(fromWF,toDev,*b1,k1,*t1);
rtn = STRS_GetTime(fromWF,toDev,*b2,k2,*t2);
[* The time difference between timer k1 and
* timer k2 is computed by obtaining the two
* times, t1 and t2, and adjusting for the
* time difference between the two base times,
*p2 and b1l:
*/
isec = STRS_GetSeconds(t2) -
(STRS_GetSeconds(tl) +
(STRS_GetSeconds(b2) -
STRS_GetSeconds(bl)));
nsec = STRS_GetNanoseconds(t2) -
(STRS_GetNanoseconds(t1) +
(STRS_GetNanoseconds(b2) -
STRS_GetNanoseconds(bl)));
diff = STRS_GetTimeWarp(isec,nsec);

1120f 154

NASA-STD-4009

Table 555 STRS_GetTimeWarp()
STRS_GetTimeWarp()

Description Get the STRS_TimeWarp object containing the number of seconds a
nanoseconds in thane interval.
Parameters 1 isec- (in STRS_int32) number of seconds in the time interval

T nsec- (in STRS_int32) number of nanoseconds in the fractional
portion of the time interval

Return STRS_TimeWarp object representing the time interval.
Precondition Any.

Postcondition No change.

See Also STRS_GetNanoseconds, STRS_GetSeconds, STRS_SetTime
Example STRS_TimeWarp delta;

STRS_int32 isec = 1; /* Leap second. */
STRS int32 nsec =0;
delta = STRS_GetTimeWarp(isec,nsec);

Table 560 STRS_SetTime()

STRS_SetTme()

Description Set the current time in the specified clock/timer by adjusting the time offse
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component making
the request.
1 toDev- (in STRS_HandlelD) handle ID of device that should redgon
the request.
1 kind- (in STRS_Clock_Kind) type of clock/timer.
1 delta- (in STRS_TimeWarp) increment to add to specified clock/timer.

Return status (STRS_Result)
Precondition Any.

Postcondition Time is adjusted.

See Also STRS_GetTime
Example STRS_TimeWarp delta;

STRS_int32 isec = 1; /* Leap second */
STRS int32 nsec =0;

STRS_Result rtn;

STRS_Clock_Kind k1 =1;

delta = STRS_GetTimeWarp(isec,nsec);

rtn = STRS_SetTime(fromWF,toDev,k1,delta);

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1130f 154

NASA-STD-4009

Table 510 STRS_Synch()
STRS_Synch()

Description Synchroiize clocks. The action depends on whether the clocks to be
synchronized are internal or external.
Parameters 1 fromWF- (in STRS_HandlelD) handle ID of current component making

the request.

1 refDev- (in STRS_HandlelD) handle ID of reference device contgitiie
reference clock/timer.

1 ref-(in STRS_Clock_Kind) type of reference clock/timer.

9 targetDev (in STRS_HandlelD) handle ID of target device to synchron

9 target- (in STRS_Clock_Kind) type of clock/timer to synchronize with
reference clock/timer.

Return status (STRS_Result)

Precondition Any.

Postcondition Clocks are synchronized.

See Also N/A.

Example qref = STRS_Handl eRequest (myQ, oRe
iref = 0;
gt gt = STRS _Handl eRequest(myQ, 0Ta
itgt = O;
rtn = STRS_Synch(myQ,gref,iref, gtgt,itgt);

if (! STRS_IsOK(rtn)) {
STRS_Buffer_Size nb = strlen(
ASTRS_ Synch fails. 0);
STRS_Log(myQ, STRS_ERROR_QUEUE,
ASTRS_ Synch fails. o, nb) ;
}

(STRS82) Any portion of the STRS Applications on the GPP needing timeatahiall use the
STRS Infrastructure Time Control methods to access the hardware and software timers.

(STRS83) The STRS infrastructure shall contain a callable STRS_GetNanoseconds method as
described inable 52 STRS_GetNanoseconds().

(STRS84) The SRS infrastructure shall contain a callable STRS_GetSeconds method as
described intable 53 STRS_GetSeconds().

(STRS85) The STRS infrastructure shall contain a callable STRS_GetTime method as described
in table 54 STRS_GetTime().

(STRS86) The STRS ifmastructure shall contain a callable STRS_GetTimeWarp method as
described inable 55 STRS_GetTimeWarp().

(STRS87) The STRS infrastructure shall contain a callable STRS_SetTime method as described
in table 56 STRS_SetTime().

(STRS88) The STRS infstructure shall contain a callable STRS_Synch method as described in
table 57 STRS_Synch().
APPROVED FOR PUBLIC RELEASE & DISTRIBUTION IS UNLIMITED

1140f 154

NASA-STD-4009

7.3.10 STRS Predefined Data

For portability, standard names are defined for various constants and data types, but the

implementation of these definitions is s dependent. The common symbols and data types

defined to support the STRS infrastructure APIs are shotabla 5§ STRS Predefined Data.

(STRS89) The STRS platform provider shall provide an STRS.h file containing the STRS
predefined data shown table 58 STRS Predefined Data.

(STRS106) An STRS application shall use the appropriate constant, typedef, or struct defined in

table 58 STRS Predefined Datarhen the data are used to interact with the STRS APIs.

Table 58 STRS Predefined Data

Typedefs |1

= =4 —a -8 A

=a =

1
1
1

)

STRS_Accessa type of number used to indicate how reading and/or writing o
file or queue is done. See also constants STRS_ACCESS_APPEND,
STRS_ACCESS_BOTH, STRS_ACCESS_READ, and STRS_ACCESS_WRI
STRS_Buffer_Sizé a type of number used to represemituffer size in byteS.he
type of the numbeis tobe longenough to contain the maximum number of byte:
reserve or to transfer with a read or write.

STRS_Clock_Kind a type of number used to represent a kind of clock or timel
The type of the numbés to be longenough to contain the maximum number of
kinds of clocks and timers.

STRS_File_Size a type of number used to represent a size in bytestype of
the number is to be lorenough to contain the number of bytes in GPP storage.
negative alue returned indicates an error.

STRS_HandlelD a type of number used to represent an STRS application, de
file, or queueA negative value returned indicates an error.

STRS int8 an 8bit signed integer

STRS intl6 a 16bit signed integer

STRS int32- a 32bit signed integer

STRS_int64 a 64bit signed integer

STRS_ISR_Functionused to define static-&yle function pointers passed to the
STRS_SetISR() method. The function passed to the STRS_SetISR() risethod
defined with no arguments.

STRS_Messagea char array pointer used for messages.
STRS_NumberOfProperties type of number used to represent the number of
properties in a Properties structure.

STRS_Queue_Typlea type of number used to represent the queue type. See .
constants STR_QUEUE_SIMPLE and STRS_QUEUE_PUBSUB.
STRS_Priority- a type of number used to represent the priority of a queue. Set
constants STRS_PRIORITY_HIGH, STRS_PRIORITY_MEDIUM,
STRS_PRIORITY_LOW.

STRS_Propertiets hor t hand for fAstruct Pr opce
STRS_Proprtyis hort hand for #fAstruct Prope
STRS_Resul a type of number used to represent a return value, where negat
indicates an error.

STRS_TestlD a type of number used to represent the fitest or ground test t

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1150f 154

NASA-STD-4009

be performed by APP_RunTestAPP_GroundTest, respectively. See also
STRS_TEST_STATUS and STRS_TEST_USER_BASE.

STRS_TimeWarp a representation of a time delde values in the
representation are to lable to hold the number of seconds and nanoseconds ir
time delay so that theooresponding macros can extract them. The time delay is
meant to be used for recurrent processes such as in health management. The
implementation is mission and/or platform specific and is most likely a struct.
maximum number of seconds in a time dalaginot be greater thaf'2econds (68
years). See also STRS_GetSeconds(), STRS_GetNanoseconds(), and
STRS_GetTimeWarp().

STRS_Type a type of number used to indicate whether a file is text or binary.
also constants STRS_TYPE_BINARY and STRS_TYPE_TEX

STRS_uint& an 8bit unsigned integer

STRS_uintl6 a 16bit unsigned integer

STRS_uint32 a 32bit unsigned integer

STRS_uint64 a 64-bit unsigned integer

Constants

=A== =a=2

E I I

1

STRS_ACCESS_APPENBDBwriting is allowed such that previous data written au
preseved and new data are written following any previous data. Corresponds
| SO C fopen mode faod.

STRS_ACCESS BOTHboth reading and writing are allowed. Corresponds to
| SO C fopen mode fAr+0 used for upd:
STRS_ACCESS_READBreading is allowed. CorrespontisISO C fopen mode
Ar o.

STRS_ACCESS_WRITEwriting is allowed. Corresponds to ISO C fopen mod
Awo .

STRS_OK-the STRS_Result is valid. See also STRS_IsOK().
STRS_ERROR the STRS_Result is invalid. This indicates an error such that t
application or ther component is still usable. Indicated by a negative value. Se
also STRS_IsOK(@nd STRS_GetErrorQueue().

STRS ERROR_QUEUE the STRS_HandlelD indicates that the log queue is fc
error messages. See also STRS_GetErrorQueue().

STRS_FATAL-the STRS_Ratlt is invalid. This indicates a serious error such t
the application or other component is not usable. Indicated by a negative valu
also STRS_IsOK() and STRS_GetErrorQueue().

STRS FATAL_QUEUE - the STRS_HandlelD indicates that the log queueris fc
fatal messages. The fatal queue is used for messages that the fault monitorin
recovery functiongre todeal with immediately. The messages are sent to the F
Computer for further handling. See also STRS_GetErrorQueue().
STRS_PRIORITY_HIGH anumber representing a higimiority queue.
STRS_PRIORITY_MEDIUM a number representing a medupmiority queue.
STRS_PRIORITY_LOW a number representing a lgwiority queue.
STRS_QUEUE_PUBSUB a number representing a Publish/Subscribe queue
STRS QUEUE_SIMPLEI a number representing a simple queue type.

STRS TELEMETRY_QUEUE- the STRS_HandlelD indicates that the log quel
is for telemetry data.

STRS_TEST_STATUS$ The numerical value of type STRS_TestID used as th
argument to APP_RunTest and STR8nTest so that the state of the STRS
application is returned.

STRS_TEST_USER_BASEThe numerical value of type STRS_TestID for the

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1160f 154

NASA-STD-4009

= =4 =9

lowest numbered useefined test. Any STRS_TestID values lower than
STRS_TEST _USER_BASE are reserved arguments to APA &RurAn example
of a test type lower than STRS_TEST_USER_BASE is STRS_TEST_STATU:
STRS_TYPE_BINARY- the value indicating that a file is a binary file.
STRS_TYPE_TEXT- the value indicating that a file is a text file.
STRS_WARNING- the STRS_Result iswalid. This indicates an error such that
there may be little or no effect on the operation of the application or other
component. Indicated by a negative value. See also STRS_IsOK() and
STRS_GetErrorQueue().

STRS WARNING_QUEUE- the STRS_HandlelD indicatéisat the log queue is
for warning messages. See also STRS_GetErrorQueue().
STRS_APP_FATAL- waveform, service, or device state indicating that a
nonrecoverable error has occurred. See also STRS_GetErrorQueue().
STRS_APP_ERRORwaveform, service, or d@e state indicating that a
recoverable error has occurred. See also STRS_GetErrorQueue().
STRS_APP_INSTANTIATED waveform, service, or device state indicating ths
the object is instantiated and ready to accept messages.
STRS_APP_RUNNING waveform, sevice, or device state indicating that
STRS_Start() has been called.

STRS_APP_STOPPEDBwaveform, service, or device state indicating that
STRS_Initialize() or STRS_Stop() has been called.

Structs

Property- a struct with twecharacter pointer variablesame and value. Using a
structure allows treating a name and value pair as a single item.

Properties a struct with two variables (nProps and mProps) of type
STRS_NumberOfProperties, and an array of Property structures (vPrbes).
variablenProps corgins the number of items in the vProps array. The variable
mProps contains the maximum number of items in the vProps array. Using an
of structures allows treating each name and value pair as a single item in the
array.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1170f 154

NASA-STD-4009

7.3.11 Error Handling

Specialpurpose handle IDs for errors include the following: STRS_ERROR_QUEUE,
STRS_WARNING_QUEUE, and STRS_FATAL_QUEUE. The STRS_Log method uses these
speciatpurpose handle IDs to log errors. A nonfatal error isarectable condition such that
the application is usable when the error is corrected. This nonfatal errdeisoted by the STRS
return value of STRS_ERROR and is logged using the STRS handle ID of
STRS_ERROR_QUEUE.warning is an indication of an impending error that is correctable if
action is taken. This warning enoted by the STRS return valu&®RS_WARNING and is
logged using the STRS handle ID of STRS_WARNING_QUKfaal error is a condition
where the application is subsequently not usable and a reboot or reload is often neddssa
fatal error isdenoted byhe STRS return value STRS_FATAL and Isgged using the STRS
handle ID of STRS_FATAL_QUEUE.

7.4 Portable Operating System Interface

POSIX refers to a family of IEEE standards 1003.n that describe the fundamevitsdsand
functions necessary to provide a UNIke kernel interface to applications. POSIX itself is not
an OS but is instead the guaranteed programming interfaces available to the application
programmer.

POSIX specifies a set of OS interfaces andises. POSIX is not specifically bound to a specific

O0OS, and has in fact been i mplemented on top o
(D E C@psenVMSVirtual Memory Systenmgnd Microsoft Windows NT. However, the creation

of POSIX is closely coupdl to the UNIX OS and its evolution. The goal was to create a standard

set of interfaces that all of the UNIX flavors would support in order to facilitate software

portability. Even though POSIX technically refers to the family of specifications, it & mor

commonly used to refer specifically to IEEE 1003.1, which is the core POSIX specification.

Characteristics of POSIX include the following:

a. Applicationoriented

Interface, not implementation

Source, not object, portability

The CGlanguage/system intiaces written in terms of the ISDstandard
No superuser, no system administration

Minimal interface, minimally definédcore facilities of thissandard have been kept
as minimal as possible.

Broadly implementable
Minimal changes to historical implemiations
i. Minimal changes to existing application code

~®oo0cC

S

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1180f 154

NASA-STD-4009

The original POSIX specification was based on a geraugbose computing platform, but a
series of amendments addressed the unique requirements-binealomputing. These
amendments follow:

IEEE Std 1003.141993 Realtime Extension

IEEE Std 1003.24995 Thread&xtension

IEEE Std 1003.1:4999 Additional Realtime Extensions
IEEE Std 1003.12000 Advanced Realtime Extensions
IEEE Std 1003.1:@000 Tracing

® 20 T

These amendments were rolled intolthse specification in version IEEE 1003.996.
IEEE 1003.13 provides a standardased option for an STRS AEP.

7.4.1 STRS Application Environment Profile

The subset of the POSIX API described besawged by STRS applications to access platform
services when no STRS Infrastructymevided API is available. POSIX was the chosen as part
of this Standardecause it defines an opstandard OS interface and environment to support
application portability. However, because of the limited resources ona@$paed platform, it
was not practical to support the entire IEEE 1003.1 specification.

The POSIX 1003.1 standard provides a means to implement a subset of the interfaces by using
ASubprofiling Option Groups. 0O Tbheakibpbdbibhagr
removed from the base POSIX specification.

IEEE 1003.13 created four AEPs that specified subsets of 1003.1 more suitable to embedded
applications. These profiles follow:

PSES5DH Minimal Realtime Systems Profile
PSE5?d Realtime Contrdér System Profile
PSE53® Dedicated Realtime System Prafile
PSE54 Multi-Purpose Realtime System Profile

= =4 4 =

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1190f 154

NASA-STD-4009

\

— T \ Multi-Purpose
/ : 7 _—— PSES4
Networki Asynchronous f Multiple ~
Networking Lo Processes / Shell &
Utilities

Message -
Queueg Il/l[l]lti.ple

Users

Simple
File System
Dedicated

PSE53 / T
[Full

File System

Minimal
PSE51

—

Others

Figure 160 Profile Building Blocks

The profiles are each upwardly compatible and consist of the basic building blocks shown in
figure 16,* Profile Building Blocks.

Each of these profiles has increasing capabilities, which inensssgiirements on resources.
Profiles 51 and 52 run on a single processor with no Memory Management Unit (MMU), and
thus imply a single process containing one or more tgeRrofile 52 adds a file system

interface and asynchronous 1/O. Profile 53 adds support for multiple processes, thus requiring
an MMU. The last and largest profile 54 adds support for interactive users, and is almost a full
blown POSIX 1003.1 environmeithe higher numbered profiles are supersets of the lower
numbered profiles, such that PSE52 includes all the features of a PSE51.

Upward portability between profiles is supported by requiring certain APIs, such as memory
locking, for profiles PSE51 arfdSES2. Even though there is no MMU support on the PSE51 and
PSES2 profiles, code written as if there is an MMU present will be portable among all four
profiles by requiring such APIs to be defined in all four profiles. The signature of these APIs will
be dentical on all profiles, but the functionality will differ according to the capabilities. For
example, calling a memotgcking APl on a PSE51 platform with no MMU will always return
success. When this example application is ported to a PSE53 platfermethory locking will

work as intended without modification to the source code.

Currentlythis Standardsuppors platforms based on profiles PSE51 through PSE54, although
PSES54 will only be used for development platforms and grstatins. Allowing mulple
profiles allows the architecture to scale with mission class. Applications developed for a specific

' |EEE Std 1003.12003
APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1200f 154

NASA-STD-4009

profile are compatible with higher profiles; that is, a profi2 application could be ported to
profile PSE53 and PSE54 platform, but not vice vefsas upward scalability anticipates that
smaller platforms will desire smaller profiles and will not have the resources to run larger
applications that comply with the larger profilégopendix Borovides a table comparing the
POSIX profile functionalityor subset PSE51 through PSES3.

(STRS90) The STRS OE shall provide the interfaces described in POSIX IEEE Standard
1003.132003 profile PSE51.

For constraineeresource platforms with limited software evolutionary capability, where the
waveform signaprocessing is implemented in specialized hardware, the supplier may request a
waiver to only implement a subset of POSIX PSE51 as required by the portion of the waveforms
residing on the GPP. The applications created for this platf@retobe upwardcompatible to

a larger platform containing POSIX PSE51. The POSIX API is grouped into units of
functionality.lf none of the applications for a constrairezsource platform use any of the
interfaces in a unit of functionality, then the supplier may requestieer to eliminate that

entire unit of functionality.

Regardless of the POSIX profile implemented, applicaao@sotto use any restricted
functions or their equivalent, such as abort(), atexit(), exit(), calloc(), free(), malloc(), or
realloc(). Forportability of application code to multithreaded radio platforms, STRS
applicationsare touse the threadafe versions of the POSIX methods listetdlite 59
Replacements for Unsafe Functions.

(STRS91) STRS applications shall use POSIX methods eXoefpite unsafe functions listed in
table 59 Replacements for Unsafe Functions.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1210f 154

NASA-STD-4009

Table 59 Replacements for Unsafe Functions

Unsafe Function Reentrant Counterpart
Do Not Use! OK'to Use
abort STRS_AbortApp
asctime asctime _r
atexit -
calloc -
ctermid ctermid_r
ctime ctime_r
exit STRS_AbortApp
free -
getlogin getlogin_r
gmtime gmtime_r
localtime localtime_r
malloc -
rand rand r
readdir readdir_r
realloc -
strtok strtok_r
tmpnam tmpnam_r

7.5 Network Stack

A network stack is the paof the OS used for networking, usually Transmission Control
Protocol/Internet Protocol (TCP/IP). Communications over a network use a layered network
model. TCP/IP is the protocol that is used to transport information oventemet, and the
TCP/IP netvork model consists of five layers: the application layer, the transport layer, the
network layer, the data link layer, and the physical network.

7.6 Operating System

The OS is an integral part of the OE for the STRS software architecture. Modern coatonni
systems perform simultaneous application processing in dedicated hardware at the very fast
speeds to which users have become accustomed. Any change in this enviotueenial or

exceed previous performance for it to be considered for usagelcAsthe proposal to perform
application processing via software modules executing on a GPP requires careful consideration
of both the necessary OS characteristics and the application processing requirements. In a
simplistic sense, a computer OS manapesusage and sharing of resources between competing
users (i.e., tasks) to perform work. In this case, each task is performing a specific instance of
application processing. When the OS decides to stop the execution of one task and start another,
the current context of the machine (register values, instruction pointers,i®to.pe saved and

then switched to accommodate the requirements of the new task. On a desktop computer system,
context switching between competing tasks is performed on-hocaokss with no guarantee of

task execution. For most missions, this is unacceptable because context switching between
execution threads and deterministic thread execution are the driving characteristics for an OS.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1220f 154

NASA-STD-4009

To support these requirements, most radidfpfans will usean RTOS instead of a general

purpose OS. An RTOS provides the capabilities of fast, low overhead for context switching, and
a deterministic scheduling mechanism so that processing constraints can be achieved when
required.

Fundamental t&TRS application development is the existence of an OS kernel that can be
configured and scaled down to fit into the executable image of the STRS system. A modern RTOS
is primarily designed for either performance (monolithic kernel) or extensibility (kecnel).

Monolithic kernels have tightly integrated services and lesdime overhead but are not easily
extensible. Microkernels have somewhat hightrome overheads but are highly extensible. Most
modern RTOSs are microkernels, and although modenmkamels have more overhead than
monolithic kernels, they have less overhead than traditional microkernels. Hiengin

overhead of modern RTOSs is decreased by reducing the unnecessary context switch. Important
timings such as context switch time, intgt latency, and semaphore get and release latency

to be kept to a minimum.

7.7 Hardware Abstraction Layer

The HAL is the library of software functions in the STRS OE that provides a platodor

specific view of the specialized hardware by aigting the underlying physical hardware

interfaces. The HAL allows specialized hardware to be integrated with the GPM so that the
STRS OE can access functions implemented on the specialized hardware of the STRS platform.

Two examples of specialized hasde currently in use on SDRs are FPGAs and DSPs.

Examples of functionality that a HAL might need to support include boot code for initializing the
hardware and loading the OS image, context switch code, configuration and access to hardware
resources. The AL is commonly referred to by platform vendors as drivers or BSPs. Most
companies already provide such libraries to allow use of specialized hardware. This layer
enables the STRS infrastructure to have a direct interface to the hardware drivers on the
platform.

There are two requirements concerning the HAL in the STRS architecture:

a. STRSL1 requires eHAL software API, which defines the physical and logical
interfaces for intermodule and intramodule integratidhe HAL is required for communicating
dataand control information between the GPP and the specialized hardware. The HAL APl is
not currently defined in thiStandardbut is left for theSTR$latform provider to specify.

b. STR$92 requires HAL dcumentatiorthatincludes a description of each maiH, its
calling sequence, the return values, an explanation of the functionality, preconditions for using

the method, postconditions after using the method, and examples where helpful. Note that the
delivery of the HAL source code is not required.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1230f 154

NASA-STD-4009

The eéctrical interfaces, connector requirements, and physical requirements are specified by the
STR®» |1 at form provider in the HID. |l nformation o
made available t& TRSapplication developers, either directly from timanufacturer (for

specific types of components) or from ¥R Platform provider (for memory maps based on

electrical connections). The infrastructure or HAL may use this information to appropriately

initialize hardware drivers such that control and dat@ssages are delivered to the module.

Even though there is not a requirement for the STRS OE to be portable, the HAL is expected to
foster portability and reusability of the STRS infrastructure and specialized hardware in different
combinations from thaoriginally designed. It can reduce the design efforts otherwise necessary
to adapt the software to a new hardware platform. The goal with the HAL is to make it easier to
change or add new hardware and to minimize the impact to the software. It dd®s this

localizing the differences in software so that most of the STRS OE code does not need to be
changed to run on a new platform or a platform with a new module.

Table 60,Sample HAL Documentation, shows an example of the HAL API for the function
OPEN.

(STRS92) The STRS platform provider shall provide the STRS platform HAL documentation
that includes the following:

(1) For each method or function, its calling sequence, return values, an explanation of
its functionality, any preconditions for using the mettoo function, and the
postconditions after using the method or function.

(2) Information required taddress the underlying hardwargluding the interrupt

input and output, the memory mapping, and the configuration data necessary to
operate in the STRSatform environment.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1240f 154

NASA-STD-4009

Table 6 Sample HAL Documentation

HAL API RESULT OPEN(HANDLE* resourceHandle, RESOURCE_NAME
resourceName)

Description Open a resource by name. If no errors are encountered, use the
resourceHandle to access the resource.

Parameters 1 resourceHandle[out] A pointer to place the opened handle into
1 resourceNamelin] The name of the resource to open

Return A 32-bit signed integer used to determine whether an error has occuri

Use TEST_ERROR to obtain a printable message.
1 Zero- No erors or warnings
1 Positivei Warning
1 Negativei Error.

Precondition

Resourcas not operbefore executing this command.

Postcondition

Resource will be open and ready for further access if no error
was encountered.

See Also

READ, WRITE, CLOSE, TEST_ERRR

Example

#include <HALResources.h>

é

RESULT result;

HANDLE resourceHandle;

RESOURCE_NAME resourceName = "FPGA",

result = OPEN(&resourceHandle, resourceName)

if (result <0) {

cout << "Error: " << TEST_ERROR(result) << endl;

} else if (result > 0) {

cout << "Warning: " << TEST_ERROR(result) << endl;

}

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1250f 154

8. EXTERNAL COMMAND AND TELEMETRY INTERFACES

NASA-STD-4009

An STRS radio cannot perform the necessary application and platform functions without an
external system providing commands, accepting responses, andrmionitay
and status. The STRS radio implersamt external interface to receive and act on the commands
from the external system, translathe commands into the format expected by the application,
and provids the information for monitorig the health and status of the radio. If the STRS radio
has the capability for new or modified QCdpplication softwargor configurable hardware

design the externatommand andelemetry interfaces should be able to accept and store new
files. The inteidce in the STRS radio and in the external system, wstolprovide the control,

via a command sequence, to the STRS radio and receive responses from an STRS radio, is
referred to as the STR®8mmand andelemetry interfaces. The external STd@&mand ad
telemetry functionality illustrated ifigure 17, Command and Telemetry Interfaces, typically

resides
spacecraft.

(o]

‘l:

on

Pt S
Over the Air

STRS Command and Telemetry

P

4

[

N
Other Space Vehicle

Ground Station

t he

spacecraftods

fl1ight

the radi obs

computer,

Spacecraft

_____'.::__ Command

e

{ th____lelemetr{___#_‘,i_ . |

= SRR

Uses another
radio link to talk to
the Flight Computer

Flight Computer

Pt
STRS Command and Telemetry
e I

_I:‘)b

A
External Port

Figure 170 Command and Telemetry Interfaces

This shared capability implies th#hhe STRS radit capable operfornming the interface

functions. Within the STRS radio, if there are data stored on the radiarth&ibe transferred

to an external system, the capabilgyto exist to send data usirgmissiorspecific protocol to

the receiver (flight computer, ground station, or other spacecraft) and capability in the receiver

to process those data or write those data to a file or download service or to a storage area that is
accessible from both. Theverse capability for STRS radio control is also necessérg:

external system is capablesg#findng commands using a missispecific protocol andhe ST

radio is capable ofalidating, decipheing, and processg those commands. For example, data
coming over the Flight Computer Interface are interpreted by the Command and Control
Manager as shown in figurE3 and are processed by the STRS infrastructure.

Within the STRS radio, components ofdimmand andelemetry interfaces are necessary to
provide the interfaces between the STRS OE and the &hitBand andelemetry functionality

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1260f 154

NASA-STD-4009

on the external system. To@mmand andelemetry interfaces may include a standard type of
mechanical, electrical, and functional spacecraft bus interface, such as

MILT STDi 1553; command and telemetry interpretation; and translation of the command set to
the STRS standard necessary for application control. The protocol, command set, and telemetry
set for the STR&®mmand andelemetry interfaces are NOT part of the STR8ddrd but can

be unique to each mission. A number of interface and behavior requirements are part of the
standard to support the missispecific protocols.

The requirements related to the extegmahmand andelemetry interfaces follow:
(STRS94) AnSTRS platform shall accept, validate, and respond to external commands.

(STRS95) An STRS platform shall execute external application control commands using the
standardized STRS APIs.

(STRS107) An STRS platform provider shall document the external camsidescribing their
format, function, and any STRS methods invoked.

If an STRS application needs to interface with an external system request or provide telemetry,
the following requirements apply:

(STRS96) The STRS infrastructure shall use the STR&r@method to service external
system requests for information from an STRS application.

The STRS telemetry set will be missspecific but will likely contain some or all of the
following parameters:

a. Power values
(1) Voltage, current, and power readings
b. Environment values
(1) Temperature
(2) Pressure
c. Power on reset test result status
(1) RAM test
(2) Readonly memory (ROM) test
(3) File management test
(4) PROM software revisian
(5) Maximum memory configuration
(6) Individual module selfest status (GO/NO GO)
d. Module configuation.
(1) Module type
(2) Module location
(3) Hardware revision
APPROVED FOR PUBLIC RELEASE & DISTRIBUTION IS UNLIMITED

1270f 154

NASA-STD-4009

Applicationspecific parameters

Language support (C and/or C+i)

STRS Architecture Standard version

STRS OE release version

Available memory and free space for data and files

Sa o

A suggested set odrwices that may be implemented by the S&dR8nand andelemetry

interfaces on the external system (flight computer, ground station, or other spacecraft) is shown
in table 61, Suggested Services Implemented by the @isand andelemetry interfaces.

These services are NOT required for the STRS Architecture Standard at this time, but are likely
needed for commanding and controlling an SDR and are expected to be part of the external
system set of required functions.

Table 610 Suggested Services Implemendeby the
STRS Command and Telemetry Interfaces
Function | Description
Application Control
This command requests that the STRS radio instantiate the applical
and facilitate the installation of devices and resources requested by
application. This service should not impact existing applications. Th
command arguments will include the application ASCIl name of a
deployed configuration file that identifies all other files and initial
parameters specified for an application.
This command requests a customization of the application by speci
parameters the application will use.
This command requests the current parameters and operational va
the application.
This command requests that an initialized application begin process
Application Start application data. If the application has not been selected or complet
initialization, the command will be rejected.
This command requests that a running applicatidinpinecessing of
application data. The application resources are not deallocated.
This command requests that the STRS infrastructure unload the ide
application and release all resources associated with the applicatior
File Control Interface

This request will initiate an upload of a file to the STRS radio and pl
Upload File Request it in a specified location. If the command gets an error, the regfidre
made available
This is arequest for the deliein of a specified file from an STRS
platform.
This request is complementary to the Upload File Request. This
Download File Request command will initiate a download of a specified file from the STRS
platform.

Application Selection

Application Configuration

Application Query

Application Stop

Application Unload

Delete File Request

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1280f 154

NASA-STD-4009

Radio Control Interface
Thisrequest will perform a commanded buiiittest used to monitor the
health of the radio and diagnose any problems.
Telemetry Control Interface

Several different telemetry structure definitions may exist for differe
classes of STR&ados. Many systems will employ a polling techniqug
Telemetry Control where the data are provided only upon request. Other systems may
a grouping of telemetry that can be identified to be sent at some pe
rate.

Built-in-test

9. CONFIGURATION FILE(S)

Configuration files araised by the STRS infrastructure to specify attributes of files, devices,
gueues, waveforms, and services contained on an STRS radio. Two types of configuration files
are discusseaas follows (1) Platform configuration files (which are optionaBnd (2)

Application configuration files (which are required). Platform configuration files provide the
STRS infrastructure with information on the devices and modules currently installed in the
system. Application configuration filesntain applicatiorspecific nformation for configuration

and customization of installed applications, as well as information for the STRS infrastructure to
use to instantiate applications on the radio GPP. Application configuration files pr6ViR&
application developers with fleblity in choosing parameters and values deemed pertinent to

the implementation unrestricted by tB€R$latform providers.

9.1 General Configuration File Format Definition and Use

The use of XML version 1.0 to define the STRS platform and applicatifiguration data

allows STRS platform providers aB@ RSapplication developers to take advantage of the
features of XMLthat is, to have the ability to identify configuration information in a standard,
humanlegible, precise, flexible, and adaptablethwd. XML is a markup language for

documents containing structured information that contains both content and some indication of
what role that content plays. XML defines tags containing or delimiting content and showing the
relationships between them (dagp://www.w3.0rg/XML/). XML is used to hold data and

metadata and is currently being used throughoutlthiet Tactical Radio SysterdTR3i SCA
development environment process. The Xdtmatted version of the STRS platform and
application configuratiorfiles is not intended to be sent directly to the radio because of the extra
overhead required to transmit and process XMimatted data. Instead, it is anticipated that

the XML configuration file will be preparsed, and additional error checking on #neviil be
performed prior to transmission. This process will reformat the configuration file into an
appropriately optimized configuration file, which will subsequently be loaded into the radio.
Requirements and discussion related to the configurationrigier to both the predeployed (i.e.,
nonoptimized XML file) configuration files and deployed (i.e., optimized) configuration files. The
platform developers have the option of specifying the predeployed filesdeptbged
configurationfiles. For consstency and simplicity, XML 1.0 is required. The use of XML 1.0 for
the application configuration files is required; it is strongly encouraged for the development of
the platform configuration files.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1290f 154

NASA-STD-4009

There are at least two options for preprocessing the Mbthain profile for the STRS
architecture:

(1) Generate actual code by the preprocessor to deploy the application onto the specific
hardware.

(2) Convert the XML domain profile into a static binary format that would be input to an
application deployment routin@at loads the application.

The first option has the benefit of deploying the application as fast as possible, since the
deployment code is specific to the application on the specific platform. The disadvantage of this
approach would be that the deploymeatle would have to be regenerated for all applications
that move to a different platform. The second option provides a more flexible approach, such
that the XML files are translated into a standard binary format used by all applications and
platforms. Ifthe platform changes for a group of applications, only a new deployment routine
has to be created for the new platform and nothing has to be generated for each specific
application

The XML format can accommodate a number of required configuration pamafeatures, such
asthe following:

Range limits of configuration parameters

Discrete allowable values of data items

Output formatting for each parameter that is specific to a mission
Configuration parameter dependency lagic

Error-checking logic

® Qo T

An XML interface tool could be used to create and modify platform and application configuration
files. Commercially available XML interface tools provide an interface for basic editing of the
configuration data files. In addition, these tools enforce err@c&ing and interdependency checks

to ensure that the entered data are correct and within the hardware and software limits. An XML
Schema Definition (XSD) file contains an XML schema describing the structure and constraining the
content of XML documents Satp://www.w3.org/XML/SchemaAn XML schemas to be used to
describe the XML file format of the application configuration files. Many tools use an XML schema
to standardize the XML data entry and provideibasror checking.

Figure 18, XML Transformation and Validation, illustrates the relationships between an XML

file and its corresponding schema, as well as representing the preprocessing of the XML file in a
simplified form using Extensible Stylesheetdiaage (XSLYransformatios (XSLE). XSL is a

family of recommendations for defining XML document transformation and presentatidn. XSL

is a language for transforming XML into text using any other vocabulary imaginable. The XSLT
uses an expression languag@L Path Language (XPath), to access or refer to parts of an

XML document. For transmuting instances of configuration files in XML, to create the desired
output, an XSL (XSLT and XPath) could be usedh@pe&/www.w3.0rg/Style/XS)./

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1300f 154

http://www.w3.org/XML/Schema
http://www.w3.org/Style/XSL/

NASA-STD-4009

Schemais used to validate
XML. XML follows Schema.

Schema >

XSL isused to
transform X ML.

XML XSL

* XSLT

/

S-Expressions

Figure 180 XML Transformation and Validation

The XML should be preprocessed to a platfspacific format to optimize space on the STRS
radio while keeping the equivalent content.

The application configuration files are wiloped by th&TRSntegrators using information
obtained from both thBTRSlatform provider and th&TRSapplication developers. TIHETRS
integrators use the application configuration files to install the applications on the platform.
There may be muttle STR3ntegrators. TheSTRSntegrator for each application may be the
STR3latform provider orISTRSapplication developer or a designated entity. Bi&RS

integrator is always the STRS infrastructure developer for any applications delivered with the
infrastructure. The application configuration file requirements are written assuming that the
STRSpplication developers arfdTRSlatform providers are separate entities and that not all
the applications and documentation are available at the sameasrttee platform, schema, and
transformation toolsFigure 19, Configuration File Development Process, details the process,
provider, and related requirement numbers for the development and delivery of platform and
application configuration files.

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1310f 154

NASA-STD-4009

Figure 199 Configuration File Development Process

9.2 Platform Configuration Files

The development and delivery of the platform configuration files is a goal of the STRS
architecture but is optional. THETRSlatform provider has the option to choose thehodto
describe and use the hardware and software environment for the STRS infrastructure.
Developingplatform configuration file(s) is the likely method to be used by an STRS platform
provider to identify the existence of the different hardware modutkthair associated
configuration files to allow the OE to instantiate drivers and test applications. An STRS platform
configuration filemay beused when starting the STRS infrastructure to configure various
properties of the STRS platfor@onfiguring these properties at rustime allows greater

flexibility than configuring them at compitame. To increase the runtime flexibility of the STRS
platform, the STRS infrastructure is likely to use deployed platform configuration files to
determine the existenemd attributes of the files, devices, queues, waveforms, and services
contained on the STRS radio. Attributes of files, devices, and queues could include access
(read/write, both, or append), type (text or binary), and other properties. The name of the
starting configuration file(s) may be provided to the STRS infrastructure upon initialization. The
predeployed platform configuration files should contain platform configuration information such
as the following:

Hardware module names and types
Memory typessizes, and access
Memory mapping
d. Unique names and attributes of files, devices, queues, services, and applications
known to the OE at boaitp.

o T p

APPROVED FOR PUBLIC RELEASE 8 DISTRIBUTION IS UNLIMITED

1320f 154

